Theoremsfg_of_wellQuasiOrderedLE, out, closure_finite_fg, closure_finset_fg, fg_def, fg_iff, fg_iff', fg_iff_addMonoid_fg, fg_iff_addSubgroup_fg, fg_iff_exists_freeAddGroup_hom_surjective, fg_iff_mul_fg, fg_of_finite, fg_of_group_fg, fg_of_surjective, fg_range, instFGInt, fg_top, closure_finite_fg, closure_finset_fg, fG_iff, fg_def, fg_iff, fg_iff_addSubmonoid_fg, fg_iff_exists_freeAddMonoid_hom_surjective, fg_iff_mul_fg, fg_of_addGroup_fg, fg_of_finite, fg_of_monoid_fg, fg_of_surjective, fg_range, instFGNat, multiples_fg, biSup, biSup_finset, bot, finset_sup, iSup, pi, prod, sup, fg_iff, fg_iff_addSubmonoid_fg, fg_iff_mul_fg, biSup, biSup_finset, bot, exists_minimal_closure_eq, finset_sup, iSup, map, map_injective, pi, prod, sum, sup, exists_minimal_closure_eq_top, fg_eqLocusM, fg_iff, fg_iff_mul_fg, fg_of_subtractive, iSup_map_single, multiples_fg, fg_of_wellQuasiOrderedLE, out, closure_finite_fg, closure_finset_fg, fg_def, fg_iff, fg_iff', fg_iff_exists_freeGroup_hom_surjective, fg_iff_monoid_fg, fg_iff_subgroup_fg, fg_of_finite, fg_of_mul_group_fg, fg_of_surjective, fg_range, iff_add_fg, fg_top, closure_finite_fg, closure_finset_fg, fg_def, fg_iff, fg_iff_add_fg, fg_iff_exists_freeMonoid_hom_surjective, fg_iff_submonoid_fg, fg_of_addMonoid_fg, fg_of_finite, fg_of_group_fg, fg_of_surjective, fg_range, powers_fg, instAddGroupFG, instAddMonoidFG, instGroupFG, instMonoidFG, instAddGroupFG, instAddMonoidFG, instGroupFG, instMonoidFG, fg, fg, biSup, biSup_finset, bot, finset_sup, iSup, pi, prod, sup, fg_iff, fg_iff_add_fg, fg_iff_submonoid_fg, biSup, biSup_finset, bot, exists_minimal_closure_eq, finset_sup, iSup, map, map_injective, pi, prod, sup, exists_minimal_closure_eq_top, fg_eqLocusM, fg_iff, fg_iff_add_fg, fg_of_divisive, iSup_map_mulSingle, powers_fg | 130 |