Documentation Verification Report

CyclicallyReduced

πŸ“ Source: Mathlib/GroupTheory/FreeGroup/CyclicallyReduced.lean

Statistics

MetricCount
DefinitionsIsCyclicallyReduced, reduceCyclically, conjugator, IsCyclicallyReduced, reduceCyclically, conjugator
6
Theoremsflatten_replicate, isReduced, nil, singleton, append_flatten_replicate_append, instIsAddTorsionFree, isCyclicallyReduced_cons_append_iff, isCyclicallyReduced_iff, conj_conjugator_reduceCyclically, cons_append, nil, singleton, cons_append, isCyclicallyReduced, nil, reduce_flatten_replicate, reduce_flatten_replicate_succ, singleton, flatten_replicate, isReduced, nil, singleton, append_flatten_replicate_append, instIsMulTorsionFree, isCyclicallyReduced_cons_append_iff, isCyclicallyReduced_iff, conj_conjugator_reduceCyclically, cons_append, nil, singleton, cons_append, isCyclicallyReduced, nil, reduce_flatten_replicate, reduce_flatten_replicate_succ, singleton
36
Total42

FreeAddGroup

Definitions

NameCategoryTheorems
IsCyclicallyReduced πŸ“–MathDef
5 mathmath: IsCyclicallyReduced.nil, reduceCyclically.isCyclicallyReduced, isCyclicallyReduced_iff, isCyclicallyReduced_cons_append_iff, IsCyclicallyReduced.singleton
reduceCyclically πŸ“–CompOp
7 mathmath: reduceCyclically.isCyclicallyReduced, reduceCyclically.cons_append, reduceCyclically.singleton, reduceCyclically.conj_conjugator_reduceCyclically, reduceCyclically.reduce_flatten_replicate, reduceCyclically.nil, reduceCyclically.reduce_flatten_replicate_succ

Theorems

NameKindAssumesProvesValidatesDepends On
instIsAddTorsionFree πŸ“–mathematicalβ€”IsAddTorsionFree
FreeAddGroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instAddGroup
β€”mul_comm
mul_nsmul
toWord_nsmul
reduceCyclically.reduce_flatten_replicate
isReduced_toWord
mul_eq_zero
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.instAtLeastTwoHAddOfNat
OfNat.ofNat_ne_zero
Nat.instCharZero
List.sum_replicate
negRev_length
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
reduceCyclically.conj_conjugator_reduceCyclically
mk_toWord
isCyclicallyReduced_cons_append_iff πŸ“–mathematicalβ€”IsCyclicallyReduced
IsReduced
β€”isCyclicallyReduced_iff
isCyclicallyReduced_iff πŸ“–mathematicalβ€”IsCyclicallyReduced
IsReduced
β€”β€”

FreeAddGroup.IsCyclicallyReduced

Theorems

NameKindAssumesProvesValidatesDepends On
flatten_replicate πŸ“–β€”FreeAddGroup.IsCyclicallyReducedβ€”β€”nil
FreeAddGroup.isCyclicallyReduced_iff
FreeAddGroup.IsReduced.eq_1
List.isChain_flatten
one_ne_zero
isReduced
List.isChain_replicate_of_rel
List.getLast?_flatten_replicate
List.head?_flatten_replicate
isReduced πŸ“–mathematicalFreeAddGroup.IsCyclicallyReducedFreeAddGroup.IsReducedβ€”β€”
nil πŸ“–mathematicalβ€”FreeAddGroup.IsCyclicallyReducedβ€”FreeAddGroup.IsReduced.nil
IsEmpty.forall_iff
instIsEmptyFalse
singleton πŸ“–mathematicalβ€”FreeAddGroup.IsCyclicallyReducedβ€”FreeAddGroup.IsReduced.singleton

FreeAddGroup.IsReduced

Theorems

NameKindAssumesProvesValidatesDepends On
append_flatten_replicate_append πŸ“–β€”FreeAddGroup.IsCyclicallyReduced
FreeAddGroup.IsReduced
β€”β€”one_ne_zero
append_overlap
infix
FreeAddGroup.IsCyclicallyReduced.isReduced
FreeAddGroup.IsCyclicallyReduced.flatten_replicate

FreeAddGroup.reduceCyclically

Definitions

NameCategoryTheorems
conjugator πŸ“–CompOp
6 mathmath: conjugator.singleton, conjugator.nil, conj_conjugator_reduceCyclically, conjugator.cons_append, reduce_flatten_replicate, reduce_flatten_replicate_succ

Theorems

NameKindAssumesProvesValidatesDepends On
conj_conjugator_reduceCyclically πŸ“–mathematicalβ€”conjugator
FreeAddGroup.reduceCyclically
FreeAddGroup.negRev
β€”conjugator.nil
nil
conjugator.singleton
singleton
cons_append
conjugator.cons_append
cons_append πŸ“–mathematicalβ€”FreeAddGroup.reduceCyclicallyβ€”List.bidirectionalRec_cons_append
isCyclicallyReduced πŸ“–mathematicalFreeAddGroup.IsReducedFreeAddGroup.IsCyclicallyReduced
FreeAddGroup.reduceCyclically
β€”nil
FreeAddGroup.IsCyclicallyReduced.nil
singleton
FreeAddGroup.IsCyclicallyReduced.singleton
cons_append
FreeAddGroup.isCyclicallyReduced_cons_append_iff
FreeAddGroup.IsReduced.infix
nil πŸ“–mathematicalβ€”FreeAddGroup.reduceCyclicallyβ€”List.bidirectionalRec_nil
reduce_flatten_replicate πŸ“–mathematicalFreeAddGroup.IsReducedFreeAddGroup.reduce
conjugator
FreeAddGroup.reduceCyclically
FreeAddGroup.negRev
β€”reduce_flatten_replicate_succ
reduce_flatten_replicate_succ πŸ“–mathematicalFreeAddGroup.IsReducedFreeAddGroup.reduce
conjugator
FreeAddGroup.reduceCyclically
FreeAddGroup.negRev
β€”zero_add
conj_conjugator_reduceCyclically
FreeAddGroup.isReduced_iff_reduce_eq
FreeAddGroup.reduce_append_reduce_reduce
FreeAddGroup.IsReduced.reduce_eq
FreeAddGroup.reduce.sound
neg_one_zsmul
add_assoc
Mathlib.Tactic.Group.zsmul_trick_zero'
neg_add_cancel
zero_zsmul
add_zero
FreeAddGroup.IsReduced.append_flatten_replicate_append
one_ne_zero
isCyclicallyReduced
singleton πŸ“–mathematicalβ€”FreeAddGroup.reduceCyclicallyβ€”List.bidirectionalRec_singleton

FreeAddGroup.reduceCyclically.conjugator

Theorems

NameKindAssumesProvesValidatesDepends On
cons_append πŸ“–mathematicalβ€”FreeAddGroup.reduceCyclically.conjugatorβ€”List.bidirectionalRec_cons_append
nil πŸ“–mathematicalβ€”FreeAddGroup.reduceCyclically.conjugatorβ€”List.bidirectionalRec_nil
singleton πŸ“–mathematicalβ€”FreeAddGroup.reduceCyclically.conjugatorβ€”List.bidirectionalRec_singleton

FreeGroup

Definitions

NameCategoryTheorems
IsCyclicallyReduced πŸ“–MathDef
5 mathmath: isCyclicallyReduced_cons_append_iff, isCyclicallyReduced_iff, IsCyclicallyReduced.nil, IsCyclicallyReduced.singleton, reduceCyclically.isCyclicallyReduced
reduceCyclically πŸ“–CompOp
7 mathmath: reduceCyclically.reduce_flatten_replicate_succ, reduceCyclically.nil, reduceCyclically.conj_conjugator_reduceCyclically, reduceCyclically.isCyclicallyReduced, reduceCyclically.cons_append, reduceCyclically.reduce_flatten_replicate, reduceCyclically.singleton

Theorems

NameKindAssumesProvesValidatesDepends On
instIsMulTorsionFree πŸ“–mathematicalβ€”IsMulTorsionFree
FreeGroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
β€”mul_comm
pow_mul
toWord_pow
reduceCyclically.reduce_flatten_replicate
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
List.sum_replicate
invRev_length
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
reduceCyclically.conj_conjugator_reduceCyclically
mk_toWord
isCyclicallyReduced_cons_append_iff πŸ“–mathematicalβ€”IsCyclicallyReduced
IsReduced
β€”isCyclicallyReduced_iff
isCyclicallyReduced_iff πŸ“–mathematicalβ€”IsCyclicallyReduced
IsReduced
β€”β€”

FreeGroup.IsCyclicallyReduced

Theorems

NameKindAssumesProvesValidatesDepends On
flatten_replicate πŸ“–β€”FreeGroup.IsCyclicallyReducedβ€”β€”FreeGroup.isCyclicallyReduced_iff
FreeGroup.IsReduced.eq_1
List.isChain_flatten
isReduced
List.isChain_replicate_of_rel
List.getLast?_flatten_replicate
List.head?_flatten_replicate
isReduced πŸ“–mathematicalFreeGroup.IsCyclicallyReducedFreeGroup.IsReducedβ€”β€”
nil πŸ“–mathematicalβ€”FreeGroup.IsCyclicallyReducedβ€”instIsEmptyFalse
singleton πŸ“–mathematicalβ€”FreeGroup.IsCyclicallyReducedβ€”β€”

FreeGroup.IsReduced

Theorems

NameKindAssumesProvesValidatesDepends On
append_flatten_replicate_append πŸ“–β€”FreeGroup.IsCyclicallyReduced
FreeGroup.IsReduced
β€”β€”append_overlap
infix
FreeGroup.IsCyclicallyReduced.isReduced
FreeGroup.IsCyclicallyReduced.flatten_replicate

FreeGroup.reduceCyclically

Definitions

NameCategoryTheorems
conjugator πŸ“–CompOp
6 mathmath: reduce_flatten_replicate_succ, conjugator.cons_append, conj_conjugator_reduceCyclically, reduce_flatten_replicate, conjugator.nil, conjugator.singleton

Theorems

NameKindAssumesProvesValidatesDepends On
conj_conjugator_reduceCyclically πŸ“–mathematicalβ€”conjugator
FreeGroup.reduceCyclically
FreeGroup.invRev
β€”conjugator.nil
nil
conjugator.singleton
singleton
cons_append
conjugator.cons_append
cons_append πŸ“–mathematicalβ€”FreeGroup.reduceCyclicallyβ€”List.bidirectionalRec_cons_append
isCyclicallyReduced πŸ“–mathematicalFreeGroup.IsReducedFreeGroup.IsCyclicallyReduced
FreeGroup.reduceCyclically
β€”nil
singleton
cons_append
FreeGroup.isCyclicallyReduced_cons_append_iff
FreeGroup.IsReduced.infix
nil πŸ“–mathematicalβ€”FreeGroup.reduceCyclicallyβ€”List.bidirectionalRec_nil
reduce_flatten_replicate πŸ“–mathematicalFreeGroup.IsReducedFreeGroup.reduce
conjugator
FreeGroup.reduceCyclically
FreeGroup.invRev
β€”reduce_flatten_replicate_succ
reduce_flatten_replicate_succ πŸ“–mathematicalFreeGroup.IsReducedFreeGroup.reduce
conjugator
FreeGroup.reduceCyclically
FreeGroup.invRev
β€”zero_add
conj_conjugator_reduceCyclically
FreeGroup.reduce_append_reduce_reduce
FreeGroup.IsReduced.reduce_eq
FreeGroup.reduce.sound
Mathlib.Tactic.Group.zpow_trick_one'
neg_add_cancel
zpow_zero
mul_one
FreeGroup.isReduced_iff_reduce_eq
FreeGroup.IsReduced.append_flatten_replicate_append
isCyclicallyReduced
singleton πŸ“–mathematicalβ€”FreeGroup.reduceCyclicallyβ€”List.bidirectionalRec_singleton

FreeGroup.reduceCyclically.conjugator

Theorems

NameKindAssumesProvesValidatesDepends On
cons_append πŸ“–mathematicalβ€”FreeGroup.reduceCyclically.conjugatorβ€”List.bidirectionalRec_cons_append
nil πŸ“–mathematicalβ€”FreeGroup.reduceCyclically.conjugatorβ€”List.bidirectionalRec_nil
singleton πŸ“–mathematicalβ€”FreeGroup.reduceCyclically.conjugatorβ€”List.bidirectionalRec_singleton

---

← Back to Index