Documentation Verification Report

IsFreeGroup

📁 Source: Mathlib/GroupTheory/FreeGroup/IsFreeGroup.lean

Statistics

MetricCount
DefinitionsFreeGroupBasis, instFunLike, map, ofFreeGroup, ofLift, ofUniqueLift, reindex, repr, IsFreeGroup, basis, mulEquiv, of, toFreeGroup
13
Theoremsext_hom, injective, instIsFreeGroupFreeGroup, isFreeGroup, lift_apply_apply, lift_symm_apply, map_apply, ofFreeGroup_apply, reindex_apply, repr_apply_coe, ext_hom, lift_of, lift_symm_apply, mulEquiv_def, nonempty_basis, ofLift, ofMulEquiv, ofUniqueLift, toFreeGroup_apply, toFreeGroup_symm_apply, unique_lift
21
Total34

FreeGroupBasis

Definitions

NameCategoryTheorems
instFunLike 📖CompOp
5 mathmath: repr_apply_coe, injective, reindex_apply, ofFreeGroup_apply, map_apply
map 📖CompOp
1 mathmath: map_apply
ofFreeGroup 📖CompOp
1 mathmath: ofFreeGroup_apply
ofLift 📖CompOp
ofUniqueLift 📖CompOp
reindex 📖CompOp
1 mathmath: reindex_apply
repr 📖CompOp
4 mathmath: repr_apply_coe, lift_apply_apply, IsFreeGroup.mulEquiv_def, lift_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ext_hom 📖DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
FreeGroupBasis
instFunLike
Equiv.injective
injective 📖mathematicalDFunLike.coe
FreeGroupBasis
instFunLike
MulEquiv.injective
FreeGroup.of_injective
instIsFreeGroupFreeGroup 📖mathematicalIsFreeGroup
FreeGroup
FreeGroup.instGroup
isFreeGroup
isFreeGroup 📖mathematicalIsFreeGroupinjective
lift_apply_apply 📖mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
lift
FreeGroup
FreeGroup.instGroup
FreeGroup.lift
MulEquiv
MulOne.toMul
MulEquiv.instEquivLike
repr
lift_symm_apply 📖mathematicalDFunLike.coe
Equiv
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
lift
MonoidHom.instFunLike
MulEquiv
FreeGroup
MulOne.toMul
FreeGroup.instGroup
MulEquiv.instEquivLike
MulEquiv.symm
FreeGroup.instMul
repr
FreeGroup.of
map_apply 📖mathematicalDFunLike.coe
FreeGroupBasis
instFunLike
map
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
ofFreeGroup_apply 📖mathematicalDFunLike.coe
FreeGroupBasis
FreeGroup
FreeGroup.instGroup
instFunLike
ofFreeGroup
FreeGroup.of
reindex_apply 📖mathematicalDFunLike.coe
FreeGroupBasis
instFunLike
reindex
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
repr_apply_coe 📖mathematicalDFunLike.coe
MulEquiv
FreeGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
FreeGroup.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
repr
FreeGroupBasis
instFunLike
FreeGroup.of
MulEquiv.apply_symm_apply

IsFreeGroup

Definitions

NameCategoryTheorems
basis 📖CompOp
mulEquiv 📖CompOp
3 mathmath: mulEquiv_def, toFreeGroup_symm_apply, toFreeGroup_apply
of 📖CompOp
2 mathmath: lift_of, lift_symm_apply
toFreeGroup 📖CompOp
2 mathmath: toFreeGroup_symm_apply, toFreeGroup_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ext_hom 📖DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
of
Equiv.injective
lift_of 📖mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
lift
of
Equiv.symm_apply_apply
lift_symm_apply 📖mathematicalDFunLike.coe
Equiv
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
lift
MonoidHom.instFunLike
of
mulEquiv_def 📖mathematicalmulEquiv
MulEquiv.symm
FreeGroup
FreeGroupBasis
nonempty_basis
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
FreeGroup.instMul
FreeGroupBasis.repr
Nonempty.some
nonempty_basis
nonempty_basis 📖mathematicalFreeGroupBasis
ofLift 📖mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
IsFreeGroupFreeGroupBasis.isFreeGroup
ofMulEquiv 📖mathematicalIsFreeGroupFreeGroupBasis.isFreeGroup
ofUniqueLift 📖mathematicalExistsUnique
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
IsFreeGroupFreeGroupBasis.isFreeGroup
toFreeGroup_apply 📖mathematicalDFunLike.coe
MulEquiv
FreeGroup
Generators
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
FreeGroup.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
toFreeGroup
MulEquiv.symm
mulEquiv
toFreeGroup_symm_apply 📖mathematicalDFunLike.coe
MulEquiv
FreeGroup
Generators
FreeGroup.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
toFreeGroup
mulEquiv
unique_lift 📖mathematicalExistsUnique
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Function.Bijective.existsUnique
Equiv.bijective

(root)

Definitions

NameCategoryTheorems
FreeGroupBasis 📖CompData
7 mathmath: FreeGroupBasis.repr_apply_coe, FreeGroupBasis.injective, IsFreeGroup.mulEquiv_def, IsFreeGroup.nonempty_basis, FreeGroupBasis.reindex_apply, FreeGroupBasis.ofFreeGroup_apply, FreeGroupBasis.map_apply
IsFreeGroup 📖CompData
8 mathmath: FreeGroupBasis.isFreeGroup, FreeGroupBasis.instIsFreeGroupFreeGroup, IsFreeGroupoid.SpanningTree.endIsFree, subgroupIsFreeOfIsFree, IsFreeGroup.ofMulEquiv, IsFreeGroup.ofLift, IsFreeGroup.ofUniqueLift, IsFreeGroupoid.endIsFreeOfConnectedFree

---

← Back to Index