Documentation Verification Report

NielsenSchreier

📁 Source: Mathlib/GroupTheory/FreeGroup/NielsenSchreier.lean

Statistics

MetricCount
DefinitionsIsFreeGroupoid, functorOfMonoidHom, homOfPath, loopOfHom, treeHom, actionGroupoidIsFree, of, quiverGenerators
8
TheoremsendIsFree, functorOfMonoidHom_map, functorOfMonoidHom_obj, loopOfHom_eq_id, treeHom_eq, treeHom_root, endIsFreeOfConnectedFree, ext_functor, ext_functor_iff, generators_connected, path_nonempty_of_hom, unique_lift, subgroupIsFreeOfIsFree
13
Total21

IsFreeGroupoid

Definitions

NameCategoryTheorems
actionGroupoidIsFree 📖CompOp
of 📖CompOp
2 mathmath: SpanningTree.loopOfHom_eq_id, ext_functor_iff
quiverGenerators 📖CompOp
2 mathmath: path_nonempty_of_hom, generators_connected

Theorems

NameKindAssumesProvesValidatesDepends On
endIsFreeOfConnectedFree 📖mathematicalIsFreeGroup
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
CategoryTheory.End.group
SpanningTree.endIsFree
generators_connected
ext_functor 📖CategoryTheory.Functor.map
CategoryTheory.Groupoid.toCategory
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
of
unique_lift
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
ext_functor_iff 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Groupoid.toCategory
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
of
ext_functor
generators_connected 📖mathematicalQuiver.RootedConnected
Quiver.Symmetrify
Generators
Quiver.symmetrifyQuiver
quiverGenerators
path_nonempty_of_hom
CategoryTheory.nonempty_hom_of_preconnected_groupoid
CategoryTheory.IsConnected.toIsPreconnected
path_nonempty_of_hom 📖mathematicalQuiver.Path
Quiver.Symmetrify
Generators
Quiver.symmetrifyQuiver
quiverGenerators
Quiver.WeaklyConnectedComponent.eq
FreeGroup.of_injective
mul_inv_eq_one
ext_functor
CategoryTheory.Functor.const_obj_map
CategoryTheory.SingleObj.id_as_one
CategoryTheory.SingleObj.differenceFunctor_map
unique_lift 📖mathematicalExistsUnique
CategoryTheory.Functor
CategoryTheory.Groupoid.toCategory
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid

IsFreeGroupoid.SpanningTree

Definitions

NameCategoryTheorems
functorOfMonoidHom 📖CompOp
2 mathmath: functorOfMonoidHom_map, functorOfMonoidHom_obj
homOfPath 📖CompOp
1 mathmath: treeHom_eq
loopOfHom 📖CompOp
2 mathmath: functorOfMonoidHom_map, loopOfHom_eq_id
treeHom 📖CompOp
2 mathmath: treeHom_eq, treeHom_root

Theorems

NameKindAssumesProvesValidatesDepends On
endIsFree 📖mathematicalIsFreeGroup
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
CategoryTheory.End.group
IsFreeGroup.ofUniqueLift
IsFreeGroupoid.unique_lift
homOfPath.eq_1
CategoryTheory.Functor.map_id
CategoryTheory.SingleObj.id_as_one
homOfPath.eq_2
CategoryTheory.Functor.map_comp
CategoryTheory.SingleObj.comp_as_mul
mul_one
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.IsGroupoid.all_isIso
CategoryTheory.instIsGroupoid
CategoryTheory.SingleObj.inv_as_inv
inv_eq_one
CategoryTheory.inv.congr_simp
inv_one
one_mul
CategoryTheory.Functor.mapEnd_apply
MonoidHom.ext
loopOfHom_eq_id
CategoryTheory.End.one_def
MonoidHom.map_one
treeHom_root
CategoryTheory.IsIso.inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
functorOfMonoidHom_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Groupoid.toCategory
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
functorOfMonoidHom
DFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
loopOfHom
functorOfMonoidHom_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
functorOfMonoidHom
loopOfHom_eq_id 📖mathematicalQuiver.Hom
IsFreeGroupoid.Generators
IsFreeGroupoid.quiverGenerators
Set
Set.instMembership
Quiver.wideSubquiverSymmetrify
loopOfHom
IsFreeGroupoid.of
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
loopOfHom.eq_1
CategoryTheory.Category.assoc
CategoryTheory.IsIso.comp_inv_eq
CategoryTheory.Category.id_comp
treeHom_eq
homOfPath.eq_2
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Category.comp_id
treeHom_eq 📖mathematicaltreeHom
homOfPath
treeHom.eq_1
Unique.default_eq
treeHom_root 📖mathematicaltreeHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
treeHom_eq

(root)

Definitions

NameCategoryTheorems
IsFreeGroupoid 📖CompData

Theorems

NameKindAssumesProvesValidatesDepends On
subgroupIsFreeOfIsFree 📖mathematicalIsFreeGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
IsFreeGroup.ofMulEquiv
MulAction.left_quotientAction
IsFreeGroupoid.endIsFreeOfConnectedFree
CategoryTheory.ActionCategory.instIsConnectedOfIsPretransitiveOfNonempty
MulAction.isPretransitive_quotient

---

← Back to Index