Documentation Verification Report

Orbit

📁 Source: Mathlib/GroupTheory/FreeGroup/Orbit.lean

Statistics

MetricCount
DefinitionsinstSMulElemStartsWith, startsWith
2
Theoremsduplicate, disjoint_iff_ne, ne_one, smul_def, startsWith_mk_mul
5
Total7

FreeGroup

Definitions

NameCategoryTheorems
instSMulElemStartsWith 📖CompOp
2 mathmath: startsWith.smul_def, Orbit.duplicate
startsWith 📖CompOp
4 mathmath: startsWith.Injective, startsWith.disjoint_iff_ne, startsWith.smul_def, Orbit.duplicate

Theorems

NameKindAssumesProvesValidatesDepends On
startsWith_mk_mul 📖mathematicalFreeGroup
Set
Set.instMembership
startsWith
instMultoWord_mul
reduce_toWord
mul_one
zero_add

FreeGroup.Orbit

Theorems

NameKindAssumesProvesValidatesDepends On
duplicate 📖mathematicalsetOf
Set
Set.instMembership
MulAction.orbit
Set.Elem
FreeGroup
FreeGroup.startsWith
FreeGroup.instSMulElemStartsWith
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
FreeGroup.instGroup
MulAction.toSemigroupAction
FreeGroup.instInv
Set.instUnion
Set.iUnion
Set.instSingletonSet
Set.ext
FreeGroup.mk_toWord
zero_add
FreeGroup.startsWith.smul_def
inv_smul_smul
FreeGroup.isReduced_cons_cons
FreeGroup.isReduced_toWord
Set.mem_biUnion
SemigroupAction.mul_smul
FreeGroup.IsReduced.reduce_eq
FreeGroup.startsWith_mk_mul
Disjoint.notMem_of_mem_left
FreeGroup.startsWith.disjoint_iff_ne

FreeGroup.startsWith

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_iff_ne 📖mathematicalDisjoint
Set
FreeGroup
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
FreeGroup.startsWith
zero_add
ne_one 📖FreeGroup
Set
Set.instMembership
FreeGroup.startsWith
smul_def 📖mathematicalSet.Elem
FreeGroup
FreeGroup.startsWith
FreeGroup.instSMulElemStartsWith
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
FreeGroup.instGroup
MulAction.toSemigroupAction
Set
Set.instMembership

---

← Back to Index