Documentation Verification Report

Reduce

📁 Source: Mathlib/GroupTheory/FreeGroup/Reduce.lean

Statistics

MetricCount
DefinitionsinstDecidableEq, norm, reduce, churchRosser, toWord, decidableRel, enum, instDecidableEq, instFintypeSubtypeListProdBoolRed, norm, reduce, churchRosser, toWord
13
Theoremsof_reduce_eq, reduce_eq, reduce_left, reduce_right, instNontrivialOfNonempty, isReduced_iff_reduce_eq, isReduced_toWord, mk_toWord, norm_add_le, norm_eq_zero, norm_mk_le, norm_neg_eq, norm_of, norm_of_nsmul, norm_surjective, norm_zero, of_ne_zero, eq, cons, eq_of_red, exact, idem, min, not, red, rev, self, sound, reduce_append_reduce_reduce, reduce_cons_reduce, reduce_negRev, reduce_negRev_left_cancel, reduce_nil, reduce_replicate, reduce_singleton, reduce_toWord, toWord_add, toWord_add_sublist, toWord_eq_nil_iff, toWord_inj, toWord_injective, toWord_mk, toWord_neg, toWord_nsmul, toWord_of, toWord_of_nsmul, toWord_zero, zero_ne_of, of_reduce_eq, reduce_eq, complete, sound, reduce_left, reduce_right, reduce_eq, instNontrivialOfNonempty, isReduced_iff_reduce_eq, isReduced_toWord, mk_toWord, norm_eq_zero, norm_inv_eq, norm_mk_le, norm_mul_le, norm_of, norm_of_pow, norm_one, norm_surjective, of_ne_one, one_ne_of, reduce_eq, eq, cons, eq_of_red, exact, idem, min, not, red, rev, self, sound, reduce_append_reduce_reduce, reduce_cons_reduce, reduce_invRev, reduce_invRev_left_cancel, reduce_nil, reduce_replicate, reduce_singleton, reduce_toWord, toWord_eq_nil_iff, toWord_inj, toWord_injective, toWord_inv, toWord_mk, toWord_mul, toWord_mul_sublist, toWord_of, toWord_of_pow, toWord_one, toWord_pow
100
Total113

FreeAddGroup

Definitions

NameCategoryTheorems
instDecidableEq 📖CompOp
norm 📖CompOp
8 mathmath: norm_of, norm_surjective, norm_eq_zero, norm_neg_eq, norm_zero, norm_mk_le, norm_add_le, norm_of_nsmul
reduce 📖CompOp
26 mathmath: reduce_append_reduce_reduce, FreeGroup.freeAddGroup.red.reduce_eq, reduce_negRev_left_cancel, reduce_negRev, reduce.sound, reduce_nil, reduce.rev, reduce.idem, reduce_replicate, reduce_cons_reduce, Red.reduce_left, reduce_toWord, Red.reduce_right, IsReduced.reduce_eq, reduce.self, reduce.Step.eq, reduce.red, toWord_mk, reduceCyclically.reduce_flatten_replicate, reduceCyclically.reduce_flatten_replicate_succ, reduce_singleton, reduce.cons, toWord_nsmul, reduce.eq_of_red, toWord_add, isReduced_iff_reduce_eq
toWord 📖CompOp
14 mathmath: toWord_of_nsmul, toWord_of, toWord_add_sublist, toWord_injective, toWord_inj, reduce_toWord, toWord_eq_nil_iff, mk_toWord, toWord_neg, isReduced_toWord, toWord_mk, toWord_zero, toWord_nsmul, toWord_add

Theorems

NameKindAssumesProvesValidatesDepends On
instNontrivialOfNonempty 📖mathematicalNontrivial
FreeAddGroup
zero_ne_of
isReduced_iff_reduce_eq 📖mathematicalIsReduced
reduce
IsReduced.reduce_eq
IsReduced.of_reduce_eq
isReduced_toWord 📖mathematicalIsReduced
toWord
isReduced_iff_reduce_eq
reduce_toWord
mk_toWord 📖mathematicaltoWordreduce.self
norm_add_le 📖mathematicalnorm
FreeAddGroup
instAdd
mk_toWord
norm_mk_le
norm_eq_zero 📖mathematicalnorm
FreeAddGroup
instZero
toWord_eq_nil_iff
norm_mk_le 📖mathematicalnormRed.length_le
reduce.red
norm_neg_eq 📖mathematicalnorm
FreeAddGroup
instNeg
toWord_neg
negRev_length
norm_of 📖mathematicalnorm
of
norm_of_nsmul 📖mathematicalnorm
FreeAddGroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instAddGroup
of
norm.eq_1
toWord_of_nsmul
norm_surjective 📖mathematicalFreeAddGroup
norm
norm_of_nsmul
norm_zero 📖mathematicalnorm
FreeAddGroup
instZero
of_ne_zero 📖zero_ne_of
reduce_append_reduce_reduce 📖mathematicalreducetoWord_add
reduce_cons_reduce 📖mathematicalreducereduce.idem
reduce_negRev 📖mathematicalreduce
negRev
reduce.min
red_negRev_iff
negRev_negRev
Red.reduce_left
Red.negRev
reduce.red
reduce_negRev_left_cancel 📖mathematicalreduce
negRev
neg_add_cancel
reduce_nil 📖mathematicalreduce
reduce_replicate 📖mathematicalreducereduce.cons
reduce_singleton 📖mathematicalreduce
reduce_toWord 📖mathematicalreduce
toWord
reduce.idem
toWord_add 📖mathematicaltoWord
FreeAddGroup
instAdd
reduce
mk_toWord
reduce_toWord
toWord_add_sublist 📖mathematicaltoWord
FreeAddGroup
instAdd
Red.sublist
mk_toWord
reduce.red
toWord_eq_nil_iff 📖mathematicaltoWord
FreeAddGroup
instZero
toWord_injective
toWord_zero
toWord_inj 📖mathematicaltoWordtoWord_injective
toWord_injective 📖mathematicalFreeAddGroup
toWord
reduce.exact
toWord_mk 📖mathematicaltoWord
reduce
toWord_neg 📖mathematicaltoWord
FreeAddGroup
instNeg
negRev
reduce_negRev
toWord_nsmul 📖mathematicaltoWord
FreeAddGroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instAddGroup
reduce
mk_toWord
reduce_toWord
toWord_of 📖mathematicaltoWord
of
toWord_of_nsmul 📖mathematicaltoWord
FreeAddGroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instAddGroup
of
of.eq_1
reduce.Step.eq
toWord.eq_1
reduce_replicate
toWord_zero 📖mathematicaltoWord
FreeAddGroup
instZero
zero_ne_of 📖

FreeAddGroup.IsReduced

Theorems

NameKindAssumesProvesValidatesDepends On
of_reduce_eq 📖mathematicalFreeAddGroup.reduceFreeAddGroup.IsReducedeq_1
List.isChain_iff_forall_rel_of_append_cons_cons
Bool.ne_not
FreeAddGroup.reduce.not
reduce_eq 📖mathematicalFreeAddGroup.IsReducedFreeAddGroup.reducered_iff_eq
FreeAddGroup.reduce.red

FreeAddGroup.Red

Theorems

NameKindAssumesProvesValidatesDepends On
reduce_left 📖mathematicalFreeAddGroup.RedFreeAddGroup.reduceFreeAddGroup.reduce.red
FreeAddGroup.reduce.eq_of_red
reduce_right 📖mathematicalFreeAddGroup.RedFreeAddGroup.reduceFreeAddGroup.reduce.red
FreeAddGroup.reduce.eq_of_red

FreeAddGroup.reduce

Definitions

NameCategoryTheorems
churchRosser 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
cons 📖mathematicalFreeAddGroup.reduce
eq_of_red 📖mathematicalFreeAddGroup.RedFreeAddGroup.reduceFreeAddGroup.Red.church_rosser
red
FreeAddGroup.Red.trans
min
exact 📖FreeAddGroup.reduceFreeAddGroup.Red.exact
red
idem 📖mathematicalFreeAddGroup.reducemin
red
min 📖FreeAddGroup.Red
FreeAddGroup.reduce
not
not 📖FreeAddGroup.reduce
red 📖mathematicalFreeAddGroup.Red
FreeAddGroup.reduce
FreeAddGroup.Red.cons_cons
FreeAddGroup.Red.trans
FreeAddGroup.Red.Step.to_red
FreeAddGroup.Red.Step.cons_not_rev
rev 📖mathematicalFreeAddGroup.RedFreeAddGroup.reducered
eq_of_red
self 📖mathematicalFreeAddGroup.reduceexact
idem
sound 📖mathematicalFreeAddGroup.reduceFreeAddGroup.Red.exact
eq_of_red

FreeAddGroup.reduce.Step

Theorems

NameKindAssumesProvesValidatesDepends On
eq 📖mathematicalFreeAddGroup.Red.StepFreeAddGroup.reduceFreeAddGroup.Red.church_rosser
FreeAddGroup.reduce.red
Relation.ReflTransGen.head
FreeAddGroup.reduce.min

FreeGroup

Definitions

NameCategoryTheorems
instDecidableEq 📖CompOp
instFintypeSubtypeListProdBoolRed 📖CompOp
norm 📖CompOp
8 mathmath: norm_surjective, norm_of_pow, norm_mul_le, norm_mk_le, norm_one, norm_of, norm_eq_zero, norm_inv_eq
reduce 📖CompOp
26 mathmath: reduce_invRev_left_cancel, Red.reduce_left, reduce.cons, reduce.eq_of_red, reduceCyclically.reduce_flatten_replicate_succ, reduce_append_reduce_reduce, reduce.sound, IsReduced.reduce_eq, toWord_pow, toWord_mk, isReduced_iff_reduce_eq, reduce_toWord, reduce_nil, reduce.self, Red.reduce_right, reduce.red, reduce_cons_reduce, reduce.idem, red.reduce_eq, reduce_replicate, reduce.rev, reduce_invRev, reduceCyclically.reduce_flatten_replicate, toWord_mul, reduce_singleton, reduce.Step.eq
toWord 📖CompOp
14 mathmath: toWord_of_pow, toWord_mul_sublist, toWord_pow, toWord_mk, reduce_toWord, toWord_inv, mk_toWord, toWord_one, toWord_of, toWord_injective, isReduced_toWord, toWord_inj, toWord_mul, toWord_eq_nil_iff

Theorems

NameKindAssumesProvesValidatesDepends On
instNontrivialOfNonempty 📖mathematicalNontrivial
FreeGroup
one_ne_of
isReduced_iff_reduce_eq 📖mathematicalIsReduced
reduce
IsReduced.reduce_eq
IsReduced.of_reduce_eq
isReduced_toWord 📖mathematicalIsReduced
toWord
reduce_toWord
mk_toWord 📖mathematicaltoWordreduce.self
norm_eq_zero 📖mathematicalnorm
FreeGroup
instOne
norm_inv_eq 📖mathematicalnorm
FreeGroup
instInv
toWord_inv
invRev_length
norm_mk_le 📖mathematicalnormRed.length_le
reduce.red
norm_mul_le 📖mathematicalnorm
FreeGroup
instMul
mk_toWord
norm_mk_le
norm_of 📖mathematicalnorm
of
norm_of_pow 📖mathematicalnorm
FreeGroup
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
of
norm.eq_1
toWord_of_pow
norm_one 📖mathematicalnorm
FreeGroup
instOne
norm_surjective 📖mathematicalFreeGroup
norm
norm_of_pow
of_ne_one 📖one_ne_of
one_ne_of 📖
reduce_append_reduce_reduce 📖mathematicalreducetoWord_mul
reduce_cons_reduce 📖mathematicalreducereduce.idem
reduce_invRev 📖mathematicalreduce
invRev
reduce.min
red_invRev_iff
invRev_invRev
Red.reduce_left
Red.invRev
reduce.red
reduce_invRev_left_cancel 📖mathematicalreduce
invRev
inv_mul_cancel
reduce_nil 📖mathematicalreduce
reduce_replicate 📖mathematicalreducereduce.cons
reduce_singleton 📖mathematicalreduce
reduce_toWord 📖mathematicalreduce
toWord
reduce.idem
toWord_eq_nil_iff 📖mathematicaltoWord
FreeGroup
instOne
toWord_injective
toWord_one
toWord_inj 📖mathematicaltoWordtoWord_injective
toWord_injective 📖mathematicalFreeGroup
toWord
reduce.exact
toWord_inv 📖mathematicaltoWord
FreeGroup
instInv
invRev
reduce_invRev
toWord_mk 📖mathematicaltoWord
reduce
toWord_mul 📖mathematicaltoWord
FreeGroup
instMul
reduce
mk_toWord
reduce_toWord
toWord_mul_sublist 📖mathematicaltoWord
FreeGroup
instMul
Red.sublist
mk_toWord
reduce.red
toWord_of 📖mathematicaltoWord
of
toWord_of_pow 📖mathematicaltoWord
FreeGroup
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
of
of.eq_1
reduce.Step.eq
toWord.eq_1
reduce_replicate
toWord_one 📖mathematicaltoWord
FreeGroup
instOne
toWord_pow 📖mathematicaltoWord
FreeGroup
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
reduce
mk_toWord
reduce_toWord

FreeGroup.IsReduced

Theorems

NameKindAssumesProvesValidatesDepends On
of_reduce_eq 📖mathematicalFreeGroup.reduceFreeGroup.IsReducedeq_1
List.isChain_iff_forall_rel_of_append_cons_cons
Bool.ne_not
FreeGroup.reduce.not
reduce_eq 📖mathematicalFreeGroup.IsReducedFreeGroup.reducered_iff_eq
FreeGroup.reduce.red

FreeGroup.Red

Definitions

NameCategoryTheorems
decidableRel 📖CompOp
enum 📖CompOp
1 mathmath: enum.complete

Theorems

NameKindAssumesProvesValidatesDepends On
reduce_left 📖mathematicalFreeGroup.RedFreeGroup.reduceFreeGroup.reduce.red
FreeGroup.reduce.eq_of_red
reduce_right 📖mathematicalFreeGroup.RedFreeGroup.reduceFreeGroup.reduce.red
FreeGroup.reduce.eq_of_red

FreeGroup.Red.enum

Theorems

NameKindAssumesProvesValidatesDepends On
complete 📖mathematicalFreeGroup.RedFreeGroup.Red.enumList.mem_filter_of_mem
List.mem_sublists
FreeGroup.Red.sublist
sound 📖FreeGroup.RedList.of_mem_filter

FreeGroup.freeAddGroup.red

Theorems

NameKindAssumesProvesValidatesDepends On
reduce_eq 📖mathematicalFreeAddGroup.RedFreeAddGroup.reduceFreeAddGroup.reduce.eq_of_red

FreeGroup.red

Theorems

NameKindAssumesProvesValidatesDepends On
reduce_eq 📖mathematicalFreeGroup.RedFreeGroup.reduceFreeGroup.reduce.eq_of_red

FreeGroup.reduce

Definitions

NameCategoryTheorems
churchRosser 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
cons 📖mathematicalFreeGroup.reduce
eq_of_red 📖mathematicalFreeGroup.RedFreeGroup.reduceFreeGroup.Red.church_rosser
red
FreeGroup.Red.trans
min
exact 📖FreeGroup.reduceFreeGroup.Red.exact
red
idem 📖mathematicalFreeGroup.reducemin
red
min 📖FreeGroup.Red
FreeGroup.reduce
not
not 📖FreeGroup.reduce
red 📖mathematicalFreeGroup.Red
FreeGroup.reduce
FreeGroup.Red.cons_cons
FreeGroup.Red.trans
FreeGroup.Red.Step.to_red
FreeGroup.Red.Step.cons_not_rev
rev 📖mathematicalFreeGroup.RedFreeGroup.reducered
eq_of_red
self 📖mathematicalFreeGroup.reduceexact
idem
sound 📖mathematicalFreeGroup.reduceFreeGroup.Red.exact
eq_of_red

FreeGroup.reduce.Step

Theorems

NameKindAssumesProvesValidatesDepends On
eq 📖mathematicalFreeGroup.Red.StepFreeGroup.reduceFreeGroup.Red.church_rosser
FreeGroup.reduce.red
Relation.ReflTransGen.head
FreeGroup.reduce.min

---

← Back to Index