Documentation Verification Report

Blocks

πŸ“ Source: Mathlib/GroupTheory/GroupAction/Blocks.lean

Statistics

MetricCount
DefinitionsBlockMem, instBoundedOrder, IsBlock, IsBlockSystem, IsFixedBlock, IsInvariantBlock, IsTrivialBlock, block_stabilizerOrderIso, BlockMem, instBoundedOrder, IsBlock, IsBlockSystem, IsFixedBlock, IsInvariantBlock, IsTrivialBlock, block_stabilizerOrderIso
16
Theoremscoe_bot, coe_top, instNontrivial, addSubgroup, disjoint_vadd_left, disjoint_vadd_of_ne, disjoint_vadd_right, disjoint_vadd_set_vadd, disjoint_vadd_vadd_set, empty, eq_univ_of_card_lt, iInter, image, inter, isBlockSystem, ncard_block_add_ncard_orbit_eq, ncard_block_eq_relIndex, ncard_dvd_card, not_vadd_set_ssubset_vadd_set, of_addSubgroup_of_conjugate, of_orbit, of_subset, of_subsingleton, orbit, orbit_of_normal, orbit_stabilizer_eq, pairwiseDisjoint_range_vadd, preimage, singleton, stabilizer_le, subsingleton_of_card_lt, subtype_val_preimage, translate, univ, vadd_eq_of_mem, vadd_eq_of_nonempty, vadd_eq_or_disjoint, vadd_eq_vadd_of_nonempty, vadd_eq_vadd_of_subset, vadd_eq_vadd_or_disjoint, of_normal, isBlock, isInvariantBlock, orbit, univ, isBlock, isFixedBlock, of_orbits, image, isBlock, preimage, vadd, vadd_iff, isBlock_addSubgroup, isBlock_addSubgroup', isBlock_iff_disjoint_vadd_of_ne, isBlock_iff_pairwiseDisjoint_range_vadd, isBlock_iff_vadd_eq_of_mem, isBlock_iff_vadd_eq_of_nonempty, isBlock_iff_vadd_eq_or_disjoint, isBlock_iff_vadd_eq_vadd_of_nonempty, isBlock_iff_vadd_eq_vadd_or_disjoint, isBlock_subtypeVal, isBlock_top, isInvariantBlock_iff_isFixedBlock, eq_or_disjoint, pairwiseDisjoint, stabilizer_orbit_eq, vadd_orbit_eq_orbit_vadd, coe_bot, coe_top, instNontrivial, disjoint_smul_left, disjoint_smul_of_ne, disjoint_smul_right, disjoint_smul_set_smul, disjoint_smul_smul_set, empty, eq_univ_of_card_lt, iInter, image, inter, isBlockSystem, ncard_block_eq_relIndex, ncard_block_mul_ncard_orbit_eq, ncard_dvd_card, not_smul_set_ssubset_smul_set, of_orbit, of_subgroup_of_conjugate, of_subset, of_subsingleton, orbit, orbit_of_normal, orbit_stabilizer_eq, pairwiseDisjoint_range_smul, preimage, singleton, smul_eq_of_mem, smul_eq_of_nonempty, smul_eq_or_disjoint, smul_eq_smul_of_nonempty, smul_eq_smul_of_subset, smul_eq_smul_or_disjoint, stabilizer_le, subgroup, subsingleton_of_card_lt, subtype_val_preimage, translate, univ, of_normal, isBlock, isInvariantBlock, orbit, univ, isBlock, isFixedBlock, of_orbits, image, isBlock, preimage, smul, smul_iff, isBlock_iff_disjoint_smul_of_ne, isBlock_iff_pairwiseDisjoint_range_smul, isBlock_iff_smul_eq_of_mem, isBlock_iff_smul_eq_of_nonempty, isBlock_iff_smul_eq_or_disjoint, isBlock_iff_smul_eq_smul_of_nonempty, isBlock_iff_smul_eq_smul_or_disjoint, isBlock_subgroup, isBlock_subgroup', isBlock_subtypeVal, isBlock_top, isInvariantBlock_iff_isFixedBlock, eq_or_disjoint, pairwiseDisjoint, smul_orbit_eq_orbit_smul, stabilizer_orbit_eq
138
Total154

AddAction

Definitions

NameCategoryTheorems
BlockMem πŸ“–CompOp
4 mathmath: BlockMem.coe_top, isSimpleOrder_blockMem_iff_isPreprimitive, BlockMem.coe_bot, BlockMem.instNontrivial
IsBlock πŸ“–MathDef
25 mathmath: IsBlock.of_orbit, isBlock_iff_vadd_eq_vadd_of_nonempty, isBlock_iff_vadd_eq_of_nonempty, IsBlock.singleton, IsBlock.of_subset, isBlock_iff_vadd_eq_or_disjoint, IsFixedBlock.isBlock, IsTrivialBlock.isBlock, IsBlock.empty, isBlock_top, IsBlock.orbit, isBlock_iff_disjoint_vadd_of_ne, isBlock_iff_pairwiseDisjoint_range_vadd, isBlock_iff_vadd_eq_vadd_or_disjoint, BlockMem.coe_top, IsInvariantBlock.isBlock, isSimpleOrder_blockMem_iff_isPreprimitive, isBlock_addSubgroup, BlockMem.coe_bot, IsBlock.of_subsingleton, IsBlock.univ, isBlock_addSubgroup', isBlock_iff_vadd_eq_of_mem, isBlock_subtypeVal, IsBlock.orbit_of_normal
IsBlockSystem πŸ“–MathDef
2 mathmath: IsBlock.isBlockSystem, IsBlockSystem.of_normal
IsFixedBlock πŸ“–MathDef
4 mathmath: IsInvariantBlock.isFixedBlock, isInvariantBlock_iff_isFixedBlock, IsFixedBlock.orbit, IsFixedBlock.univ
IsInvariantBlock πŸ“–MathDef
2 mathmath: isInvariantBlock_iff_isFixedBlock, IsFixedBlock.isInvariantBlock
IsTrivialBlock πŸ“–MathDef
2 mathmath: IsTrivialBlock.vadd_iff, IsPreprimitive.isTrivialBlock_of_isBlock
block_stabilizerOrderIso πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isBlock_addSubgroup πŸ“–mathematicalβ€”IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
SetLike.coe
β€”Set.disjoint_left
vadd_coe_set
vadd_assoc
Set.vaddAssocClass
isBlock_addSubgroup' πŸ“–mathematicalβ€”IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
SetLike.coe
β€”Set.disjoint_left
op_vadd_coe_set
vadd_assoc
Set.vaddAssocClass
AddOpposite.op_vadd
isBlock_iff_disjoint_vadd_of_ne πŸ“–mathematicalβ€”IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
HVAdd.hVAdd
instHVAdd
Set.vaddSet
β€”zero_vadd
Set.disjoint_vadd_set_right
vadd_vadd
neg_vadd_eq_iff
isBlock_iff_pairwiseDisjoint_range_vadd πŸ“–mathematicalβ€”IsBlock
Set.PairwiseDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.range
HVAdd.hVAdd
instHVAdd
Set.vaddSet
β€”Set.pairwiseDisjoint_range_iff
isBlock_iff_vadd_eq_of_mem πŸ“–mathematicalβ€”IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
β€”isBlock_iff_vadd_eq_of_nonempty
Set.mem_inter_iff
Set.mem_vadd_set
exists_exists_and_eq_and
isBlock_iff_vadd_eq_of_nonempty πŸ“–mathematicalβ€”IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
β€”isBlock_iff_disjoint_vadd_of_ne
Set.not_disjoint_iff_nonempty_inter
not_imp_comm
isBlock_iff_vadd_eq_or_disjoint πŸ“–mathematicalβ€”IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”isBlock_iff_disjoint_vadd_of_ne
isBlock_iff_vadd_eq_vadd_of_nonempty πŸ“–mathematicalβ€”IsBlock
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
β€”Set.not_disjoint_iff_nonempty_inter
not_imp_comm
isBlock_iff_vadd_eq_vadd_or_disjoint πŸ“–mathematicalβ€”IsBlock
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”β€”
isBlock_subtypeVal πŸ“–mathematicalβ€”IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
Set.image
SubAddAction
SetLike.instMembership
SubAddAction.instSetLike
SubAddAction.vadd'
AddMonoid.toAddAction
VAddAssocClass.left
β€”VAddAssocClass.left
SubAddAction.inclusion.coe_eq
image_vadd_set
instAddActionSemiHomClassAddActionHom
Set.image_eq_image
SubAddAction.inclusion_injective
Set.disjoint_image_iff
isBlock_top πŸ“–mathematicalβ€”IsBlock
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
Top.top
AddSubgroup.instTop
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup.toAddGroup
toAddSemigroupAction
AddSubgroup.instAddAction
β€”Equiv.forall_congr
Equiv.forall_congr_left
isInvariantBlock_iff_isFixedBlock πŸ“–mathematicalβ€”IsInvariantBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
IsFixedBlock
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.subset_vadd_set_iff
IsFixedBlock.isInvariantBlock
stabilizer_orbit_eq πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
stabilizer
Set
Set.addActionSet
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
orbit
SetLike.instMembership
AddSubgroup.instSetLike
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddSubgroup.toAddGroup
toAddSemigroupAction
AddSubgroup.instAddAction
β€”AddSubgroup.ext
mem_orbit_self
add_mem_cancel_right
AddSubgroup.instAddSubgroupClass
mem_stabilizer_iff
AddSemigroupAction.add_vadd
AddSubmonoid.vadd_def
vadd_orbit
vadd_orbit_eq_orbit_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
orbit
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.toAddGroup
AddSubgroup.instAddAction
β€”Set.vadd_set_range
Set.ext
Set.mem_range
AddSubgroup.Normal.conj_mem
vadd_vadd
neg_add_cancel_right
AddSubgroup.Normal.conj_mem'
vadd_neg_vadd

AddAction.BlockMem

Definitions

NameCategoryTheorems
instBoundedOrder πŸ“–CompOp
3 mathmath: coe_top, AddAction.isSimpleOrder_blockMem_iff_isPreprimitive, coe_bot

Theorems

NameKindAssumesProvesValidatesDepends On
coe_bot πŸ“–mathematicalβ€”Set
Set.instMembership
AddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Bot.bot
AddAction.BlockMem
OrderBot.toBot
Set.instLE
BoundedOrder.toOrderBot
instBoundedOrder
Set.instSingletonSet
β€”β€”
coe_top πŸ“–mathematicalβ€”Set
Set.instMembership
AddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Top.top
AddAction.BlockMem
OrderTop.toTop
Set.instLE
BoundedOrder.toOrderTop
instBoundedOrder
Set.univ
β€”β€”
instNontrivial πŸ“–mathematicalβ€”Nontrivial
AddAction.BlockMem
β€”nontrivial_iff
exists_ne
Set.mem_singleton_iff
Set.mem_univ

AddAction.IsBlock

Theorems

NameKindAssumesProvesValidatesDepends On
addSubgroup πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.toAddGroup
AddSubgroup.instAddAction
β€”β€”
disjoint_vadd_left πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
Set
Set.instHasSubset
HVAdd.hVAdd
instHVAdd
Set.vadd
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Disjoint.symm
disjoint_vadd_right
disjoint_vadd_of_ne πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
HVAdd.hVAdd
instHVAdd
Set.vaddSet
β€”AddAction.isBlock_iff_disjoint_vadd_of_ne
disjoint_vadd_right πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
Set
Set.instHasSubset
HVAdd.hVAdd
instHVAdd
Set.vadd
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”zero_vadd
disjoint_vadd_set_vadd
disjoint_vadd_set_vadd πŸ“–mathematicalAddAction.IsBlock
Set
Set.instHasSubset
HVAdd.hVAdd
instHVAdd
Set.vaddSet
Set.vadd
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Set.iUnion_vadd_set
Set.disjoint_iUnionβ‚‚_right
Eq.trans_subset
Set.vadd_set_subset_vadd
disjoint_vadd_vadd_set πŸ“–mathematicalAddAction.IsBlock
Set
Set.instHasSubset
HVAdd.hVAdd
instHVAdd
Set.vaddSet
Set.vadd
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Disjoint.symm
disjoint_vadd_set_vadd
empty πŸ“–mathematicalβ€”AddAction.IsBlock
Set
Set.instEmptyCollection
β€”Set.vadd_set_empty
disjoint_self
eq_univ_of_card_lt πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Nat.card
Set.ncard
Set.univβ€”Set.eq_empty_or_nonempty
Set.ncard_empty
MulZeroClass.zero_mul
not_lt_zero'
ncard_block_add_ncard_orbit_eq
Set.eq_of_subset_of_ncard_le
Set.subset_univ
Eq.ge
Set.ncard_univ
mul_one
Set.toFinite
Subtype.finite
le_antisymm
Mathlib.Tactic.IntervalCases.of_lt_right
mul_lt_mul_iff_of_pos_left
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Set.ncard_pos
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_ofNat
IsEmpty.exists_iff
Finite.not_infinite
Nat.card_eq_zero
MulZeroClass.mul_zero
iInter πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set.iInterβ€”AddAction.isBlock_iff_vadd_eq_vadd_of_nonempty
Set.vadd_set_iInter
Set.iInter_subset
image πŸ“–mathematicalDFunLike.coe
AddActionHom
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instFunLikeAddActionHom
AddAction.IsBlock
Set.imageβ€”Function.Surjective.forall
image_vadd_setβ‚›β‚—
instAddActionSemiHomClassAddActionHom
Set.disjoint_image_of_injective
inter πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set
Set.instInter
β€”AddAction.isBlock_iff_vadd_eq_vadd_of_nonempty
Set.vadd_set_inter
isBlockSystem πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set.Nonempty
AddAction.IsBlockSystem
Set.range
Set
HVAdd.hVAdd
instHVAdd
Set.vaddSet
β€”Set.mem_range
Set.Nonempty.ne_empty
Set.vadd_set_eq_empty
AddAction.exists_vadd_eq
Set.vadd_mem_vadd_set_iff
vadd_eq_vadd_of_nonempty
translate
ncard_block_add_ncard_orbit_eq πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set.Nonempty
Set.ncard
Set
AddAction.orbit
Set.vaddSet
Nat.card
β€”ncard_block_eq_relIndex
AddAction.index_stabilizer
AddSubgroup.relIndex_mul_index
stabilizer_le
AddAction.index_stabilizer_of_transitive
ncard_block_eq_relIndex πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set
Set.instMembership
Set.ncard
AddSubgroup.relIndex
AddAction.stabilizer
Set.addActionSet
β€”AddSubgroup.ext
AddSubgroup.relIndex.eq_1
AddAction.index_stabilizer
orbit_stabilizer_eq
ncard_dvd_card πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set.Nonempty
Set.ncard
Nat.card
β€”Dvd.intro
ncard_block_add_ncard_orbit_eq
not_vadd_set_ssubset_vadd_set πŸ“–mathematicalAddAction.IsBlockSet
Set.instHasSSubset
HVAdd.hVAdd
instHVAdd
Set.vaddSet
β€”HasSSubset.SSubset.ne
Set.instIrreflSSubset
vadd_eq_vadd_of_subset
HasSSubset.SSubset.subset
Set.instIsNonstrictStrictOrderSubsetSSubset
of_addSubgroup_of_conjugate πŸ“–mathematicalAddAction.IsBlock
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup.toAddGroup
AddAction.toAddSemigroupAction
AddSubgroup.instAddAction
AddSubgroup.map
AddEquiv.toAddMonoidHom
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
Additive
AddAut
AddSemigroup.toAdd
EquivLike.toFunLike
Equiv.instEquivLike
Additive.toMul
AddMonoidHom
AddZeroClass.toAddZero
Additive.addZeroClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddAut.instGroup
AddMonoidHom.instFunLike
AddAut.conj
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
β€”AddAction.isBlock_iff_vadd_eq_or_disjoint
AddSubgroup.mem_map
SetLike.coe_mem
vadd_vadd
neg_add_cancel_right
vadd_eq_or_disjoint
Set.disjoint_image_of_injective
AddAction.injective
of_orbit πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddAction.stabilizer
AddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddAction.orbit
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.toAddGroup
AddSubgroup.instAddAction
β€”AddAction.isBlock_iff_vadd_eq_of_nonempty
add_mem_cancel_left
AddSubgroup.instAddSubgroupClass
add_mem_cancel_right
AddAction.mem_stabilizer_iff
AddSemigroupAction.add_vadd
neg_vadd_eq_iff
AddSubmonoid.vadd_def
AddAction.vadd_orbit
of_subset πŸ“–mathematicalβ€”AddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set.iInter
Set
Set.instMembership
HVAdd.hVAdd
instHVAdd
Set.vaddSet
β€”Set.eq_empty_or_nonempty
Set.iInter_congr_Prop
Set.vadd_set_empty
Set.mem_empty_iff_false
Set.iInter_of_empty
instIsEmptyFalse
Set.iInter_univ
univ
Set.biInter_subset_of_mem
AddAction.exists_vadd_eq
Set.Finite.subset
Set.Finite.map
Set.mem_vadd_set_iff_neg_vadd_mem
Set.mem_iInter
vadd_vadd
neg_add_rev
AddAction.mem_stabilizer_iff
AddAction.mem_stabilizer_set_iff_subset_vadd_set
AddAction.isBlock_iff_vadd_eq_of_nonempty
neg_vadd_vadd
AddSemigroupAction.add_vadd
neg_neg
vadd_eq_iff_eq_neg_vadd
of_subsingleton πŸ“–mathematicalSet.SubsingletonAddAction.IsBlockβ€”Set.Subsingleton.induction_on
empty
singleton
orbit πŸ“–mathematicalβ€”AddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddAction.orbit
β€”AddAction.IsFixedBlock.isBlock
AddAction.IsFixedBlock.orbit
orbit_of_normal πŸ“–mathematicalβ€”AddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddAction.orbit
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.toAddGroup
AddSubgroup.instAddAction
β€”AddAction.isBlock_iff_vadd_eq_or_disjoint
AddAction.vadd_orbit_eq_orbit_vadd
AddAction.orbit.eq_or_disjoint
orbit_stabilizer_eq πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set
Set.instMembership
AddAction.orbit
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddAction.stabilizer
Set.addActionSet
AddSubgroup.toAddGroup
AddSubgroup.instAddAction
β€”Set.ext
Set.vadd_mem_vadd_set_iff
AddAction.exists_vadd_eq
vadd_eq_of_mem
pairwiseDisjoint_range_vadd πŸ“–mathematicalAddAction.IsBlockSet.PairwiseDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.range
HVAdd.hVAdd
instHVAdd
Set.vaddSet
β€”AddAction.isBlock_iff_pairwiseDisjoint_range_vadd
preimage πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set.preimage
DFunLike.coe
AddActionHom
instFunLikeAddActionHom
β€”AddGroup.preimage_vadd_setβ‚›β‚—
instAddActionSemiHomClassAddActionHom
Disjoint.preimage
singleton πŸ“–mathematicalβ€”AddAction.IsBlock
Set
Set.instSingletonSet
β€”Set.vadd_set_singleton
Set.singleton_eq_singleton_iff
Set.disjoint_singleton_left
Set.mem_singleton_iff
stabilizer_le πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set
Set.instMembership
AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddAction.stabilizer
Set.addActionSet
β€”vadd_eq_of_nonempty
Set.vadd_mem_vadd_set_iff
subsingleton_of_card_lt πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Nat.card
Set.ncard
Set
AddAction.orbit
Set.vaddSet
Set.Subsingletonβ€”Set.eq_empty_or_nonempty
Set.ncard_empty
Nat.instAtLeastTwoHAddOfNat
Nat.ofNat_pos
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
not_le
lt_iff_not_ge
ncard_block_add_ncard_orbit_eq
Set.ncard_le_one_iff_eq
Set.toFinite
Subtype.finite
Set.subsingleton_empty
Set.subsingleton_singleton
subtype_val_preimage πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
SubAddAction
SetLike.instMembership
SubAddAction.instSetLike
SubAddAction.vadd'
AddMonoid.toAddAction
VAddAssocClass.left
Set.preimage
β€”preimage
translate πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
β€”AddAction.isBlock_top
AddSubgroup.map_comap_eq_self_of_surjective
AddEquiv.surjective
of_addSubgroup_of_conjugate
AddSubgroup.comap_top
univ πŸ“–mathematicalβ€”AddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set.univ
β€”AddAction.IsFixedBlock.isBlock
AddAction.IsFixedBlock.univ
vadd_eq_of_mem πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set
Set.instMembership
HVAdd.hVAdd
instHVAdd
Set.vaddSetβ€”AddAction.isBlock_iff_vadd_eq_of_mem
vadd_eq_of_nonempty πŸ“–β€”AddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set.Nonempty
Set
Set.instInter
HVAdd.hVAdd
instHVAdd
Set.vaddSet
β€”β€”AddAction.isBlock_iff_vadd_eq_of_nonempty
vadd_eq_or_disjoint πŸ“–mathematicalAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”AddAction.isBlock_iff_vadd_eq_or_disjoint
vadd_eq_vadd_of_nonempty πŸ“–β€”AddAction.IsBlock
Set.Nonempty
Set
Set.instInter
HVAdd.hVAdd
instHVAdd
Set.vaddSet
β€”β€”AddAction.isBlock_iff_vadd_eq_vadd_of_nonempty
vadd_eq_vadd_of_subset πŸ“–β€”AddAction.IsBlock
Set
Set.instHasSubset
HVAdd.hVAdd
instHVAdd
Set.vaddSet
β€”β€”Set.vadd_set_empty
Set.vadd_set_eq_empty
Disjoint.eq_bot_of_le
vadd_eq_vadd_or_disjoint πŸ“–mathematicalAddAction.IsBlockHVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”AddAction.isBlock_iff_vadd_eq_vadd_or_disjoint

AddAction.IsBlockSystem

Theorems

NameKindAssumesProvesValidatesDepends On
of_normal πŸ“–mathematicalβ€”AddAction.IsBlockSystem
Set.range
Set
AddAction.orbit
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup.toAddGroup
AddAction.toAddSemigroupAction
AddSubgroup.instAddAction
β€”AddAction.IsPartition.of_orbits
AddAction.IsBlock.orbit_of_normal

AddAction.IsFixedBlock

Theorems

NameKindAssumesProvesValidatesDepends On
isBlock πŸ“–mathematicalAddAction.IsFixedBlockAddAction.IsBlockβ€”disjoint_self
IsEmpty.forall_iff
instIsEmptyFalse
isInvariantBlock πŸ“–mathematicalAddAction.IsFixedBlockAddAction.IsInvariantBlockβ€”Eq.le
orbit πŸ“–mathematicalβ€”AddAction.IsFixedBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddAction.orbit
β€”AddAction.vadd_orbit
univ πŸ“–mathematicalβ€”AddAction.IsFixedBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set.univ
β€”Set.vadd_set_univ

AddAction.IsInvariantBlock

Theorems

NameKindAssumesProvesValidatesDepends On
isBlock πŸ“–mathematicalAddAction.IsInvariantBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddAction.IsBlockβ€”AddAction.IsFixedBlock.isBlock
isFixedBlock
isFixedBlock πŸ“–mathematicalAddAction.IsInvariantBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddAction.IsFixedBlockβ€”AddAction.isInvariantBlock_iff_isFixedBlock

AddAction.IsPartition

Theorems

NameKindAssumesProvesValidatesDepends On
of_orbits πŸ“–mathematicalβ€”Setoid.IsPartition
Set.range
Set
AddAction.orbit
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”Set.PairwiseDisjoint.isPartition_of_exists_of_ne_empty
AddAction.orbit.pairwiseDisjoint
AddAction.mem_orbit_self
Set.Nonempty.ne_empty
AddAction.nonempty_orbit

AddAction.IsTrivialBlock

Theorems

NameKindAssumesProvesValidatesDepends On
image πŸ“–mathematicalDFunLike.coe
AddActionHom
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
instFunLikeAddActionHom
AddAction.IsTrivialBlock
Set.imageβ€”Set.Subsingleton.image
Set.image_univ
Set.range_eq_univ
isBlock πŸ“–mathematicalAddAction.IsTrivialBlockAddAction.IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”AddAction.IsBlock.of_subsingleton
AddAction.IsBlock.univ
preimage πŸ“–mathematicalDFunLike.coe
AddActionHom
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
instFunLikeAddActionHom
AddAction.IsTrivialBlock
Set.preimageβ€”Set.Subsingleton.preimage
Set.preimage_univ
vadd πŸ“–mathematicalAddAction.IsTrivialBlockHVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”Function.Injective.subsingleton_image_iff
AddAction.injective
Set.image_vadd
Set.image_univ_of_surjective
AddAction.surjective
vadd_iff πŸ“–mathematicalβ€”AddAction.IsTrivialBlock
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”neg_vadd_vadd
vadd

AddAction.orbit

Theorems

NameKindAssumesProvesValidatesDepends On
eq_or_disjoint πŸ“–mathematicalβ€”AddAction.orbit
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Set.not_disjoint_iff
AddAction.orbit_eq_iff
em
pairwiseDisjoint πŸ“–mathematicalβ€”Set.PairwiseDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.range
AddAction.orbit
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
eq_or_disjoint

MulAction

Definitions

NameCategoryTheorems
BlockMem πŸ“–CompOp
4 mathmath: BlockMem.coe_top, BlockMem.instNontrivial, isSimpleOrder_blockMem_iff_isPreprimitive, BlockMem.coe_bot
IsBlock πŸ“–MathDef
25 mathmath: IsBlock.of_subset, isBlock_iff_smul_eq_of_mem, BlockMem.coe_top, isBlock_iff_smul_eq_or_disjoint, isBlock_top, IsBlock.orbit_of_normal, isBlock_subgroup', IsTrivialBlock.isBlock, isBlock_iff_smul_eq_smul_of_nonempty, IsBlock.univ, IsBlock.empty, IsInvariantBlock.isBlock, IsBlock.of_subsingleton, isSimpleOrder_blockMem_iff_isPreprimitive, BlockMem.coe_bot, isBlock_subgroup, isBlock_iff_smul_eq_smul_or_disjoint, isBlock_iff_disjoint_smul_of_ne, IsBlock.orbit, isBlock_iff_pairwiseDisjoint_range_smul, isBlock_iff_smul_eq_of_nonempty, IsFixedBlock.isBlock, IsBlock.of_orbit, IsBlock.singleton, isBlock_subtypeVal
IsBlockSystem πŸ“–MathDef
2 mathmath: IsBlock.isBlockSystem, IsBlockSystem.of_normal
IsFixedBlock πŸ“–MathDef
4 mathmath: isInvariantBlock_iff_isFixedBlock, IsFixedBlock.orbit, IsFixedBlock.univ, IsInvariantBlock.isFixedBlock
IsInvariantBlock πŸ“–MathDef
2 mathmath: isInvariantBlock_iff_isFixedBlock, IsFixedBlock.isInvariantBlock
IsTrivialBlock πŸ“–MathDef
5 mathmath: isTrivialBlock_of_card_le_two, AlternatingGroup.isTrivialBlock_of_isBlock, alternatingGroup.isTrivialBlock_of_isBlock, IsPreprimitive.isTrivialBlock_of_isBlock, IsTrivialBlock.smul_iff
block_stabilizerOrderIso πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isBlock_iff_disjoint_smul_of_ne πŸ“–mathematicalβ€”IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.smulSet
β€”one_smul
smul_smul
isBlock_iff_pairwiseDisjoint_range_smul πŸ“–mathematicalβ€”IsBlock
Set.PairwiseDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.range
Set.smulSet
β€”Set.pairwiseDisjoint_range_iff
isBlock_iff_smul_eq_of_mem πŸ“–mathematicalβ€”IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
Set
Set.smulSet
β€”β€”
isBlock_iff_smul_eq_of_nonempty πŸ“–mathematicalβ€”IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
Set
Set.smulSet
β€”β€”
isBlock_iff_smul_eq_or_disjoint πŸ“–mathematicalβ€”IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
Set
Set.smulSet
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”isBlock_iff_disjoint_smul_of_ne
isBlock_iff_smul_eq_smul_of_nonempty πŸ“–mathematicalβ€”IsBlock
Set
Set.smulSet
β€”β€”
isBlock_iff_smul_eq_smul_or_disjoint πŸ“–mathematicalβ€”IsBlock
Set
Set.smulSet
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”β€”
isBlock_subgroup πŸ“–mathematicalβ€”IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
SetLike.coe
β€”smul_coe_set
smul_assoc
Set.isScalarTower
isBlock_subgroup' πŸ“–mathematicalβ€”IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
SetLike.coe
β€”op_smul_coe_set
smul_assoc
Set.isScalarTower
MulOpposite.op_smul
isBlock_subtypeVal πŸ“–mathematicalβ€”IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
Set.image
SubMulAction
SetLike.instMembership
SubMulAction.instSetLike
SubMulAction.smul'
Monoid.toMulAction
IsScalarTower.left
β€”IsScalarTower.left
SubMulAction.inclusion.coe_eq
image_smul_set
instMulActionSemiHomClassMulActionHom
Set.image_eq_image
SubMulAction.inclusion_injective
Set.disjoint_image_iff
isBlock_top πŸ“–mathematicalβ€”IsBlock
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Top.top
Subgroup.instTop
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
toSemigroupAction
Subgroup.instMulAction
β€”Equiv.forall_congr
Equiv.forall_congr_left
isInvariantBlock_iff_isFixedBlock πŸ“–mathematicalβ€”IsInvariantBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
IsFixedBlock
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.subset_smul_set_iff
IsFixedBlock.isInvariantBlock
smul_orbit_eq_orbit_smul πŸ“–mathematicalβ€”Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
orbit
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.instMulAction
β€”Set.smul_set_range
Set.ext
Subgroup.Normal.conj_mem
smul_smul
inv_mul_cancel_right
Subgroup.Normal.conj_mem'
smul_inv_smul
stabilizer_orbit_eq πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
stabilizer
Set
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
orbit
SetLike.instMembership
Subgroup.instSetLike
SemigroupAction.toSMul
Monoid.toSemigroup
Subgroup.toGroup
toSemigroupAction
Subgroup.instMulAction
β€”Subgroup.ext
mem_orbit_self
mul_mem_cancel_right
Subgroup.instSubgroupClass
Submonoid.smul_def
mem_stabilizer_iff
smul_orbit

MulAction.BlockMem

Definitions

NameCategoryTheorems
instBoundedOrder πŸ“–CompOp
3 mathmath: coe_top, MulAction.isSimpleOrder_blockMem_iff_isPreprimitive, coe_bot

Theorems

NameKindAssumesProvesValidatesDepends On
coe_bot πŸ“–mathematicalβ€”Set
Set.instMembership
MulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Bot.bot
MulAction.BlockMem
OrderBot.toBot
Set.instLE
BoundedOrder.toOrderBot
instBoundedOrder
Set.instSingletonSet
β€”β€”
coe_top πŸ“–mathematicalβ€”Set
Set.instMembership
MulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Top.top
MulAction.BlockMem
OrderTop.toTop
Set.instLE
BoundedOrder.toOrderTop
instBoundedOrder
Set.univ
β€”β€”
instNontrivial πŸ“–mathematicalβ€”Nontrivial
MulAction.BlockMem
β€”nontrivial_iff
exists_ne
Set.mem_singleton_iff
Set.mem_univ

MulAction.IsBlock

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_smul_left πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Set
Set.instHasSubset
Set.smul
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Disjoint.symm
disjoint_smul_right
disjoint_smul_of_ne πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.smulSet
β€”MulAction.isBlock_iff_disjoint_smul_of_ne
disjoint_smul_right πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Set
Set.instHasSubset
Set.smul
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”one_smul
disjoint_smul_set_smul
disjoint_smul_set_smul πŸ“–mathematicalMulAction.IsBlock
Set
Set.instHasSubset
Set.smulSet
Set.smul
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Set.iUnion_smul_set
Set.disjoint_iUnionβ‚‚_right
Eq.trans_subset
Set.smul_set_subset_smul
disjoint_smul_smul_set πŸ“–mathematicalMulAction.IsBlock
Set
Set.instHasSubset
Set.smulSet
Set.smul
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Disjoint.symm
disjoint_smul_set_smul
empty πŸ“–mathematicalβ€”MulAction.IsBlock
Set
Set.instEmptyCollection
β€”Set.smul_set_empty
eq_univ_of_card_lt πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Nat.card
Set.ncard
Set.univβ€”Set.eq_empty_or_nonempty
Set.ncard_empty
MulZeroClass.zero_mul
ncard_block_mul_ncard_orbit_eq
Set.eq_of_subset_of_ncard_le
Set.subset_univ
Eq.ge
Set.ncard_univ
mul_one
Set.toFinite
Subtype.finite
le_antisymm
Mathlib.Tactic.IntervalCases.of_lt_right
mul_lt_mul_iff_of_pos_left
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Set.ncard_pos
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_ofNat
IsEmpty.exists_iff
Finite.not_infinite
Nat.card_eq_zero
MulZeroClass.mul_zero
iInter πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set.iInterβ€”Set.smul_set_iInter
Set.iInter_subset
image πŸ“–mathematicalDFunLike.coe
MulActionHom
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instFunLikeMulActionHom
MulAction.IsBlock
Set.imageβ€”Function.Surjective.forall
instMulActionSemiHomClassMulActionHom
Set.disjoint_image_of_injective
inter πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set
Set.instInter
β€”Set.smul_set_inter
isBlockSystem πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set.Nonempty
MulAction.IsBlockSystem
Set.range
Set
Set.smulSet
β€”Set.Nonempty.ne_empty
MulAction.exists_smul_eq
smul_eq_smul_of_nonempty
translate
ncard_block_eq_relIndex πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set
Set.instMembership
Set.ncard
Subgroup.relIndex
MulAction.stabilizer
Set.mulActionSet
β€”Subgroup.ext
Subgroup.relIndex.eq_1
MulAction.index_stabilizer
orbit_stabilizer_eq
ncard_block_mul_ncard_orbit_eq πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set.Nonempty
Set.ncard
Set
MulAction.orbit
Set.smulSet
Nat.card
β€”ncard_block_eq_relIndex
MulAction.index_stabilizer
Subgroup.relIndex_mul_index
stabilizer_le
MulAction.index_stabilizer_of_transitive
ncard_dvd_card πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set.Nonempty
Set.ncard
Nat.card
β€”Dvd.intro
ncard_block_mul_ncard_orbit_eq
not_smul_set_ssubset_smul_set πŸ“–mathematicalMulAction.IsBlockSet
Set.instHasSSubset
Set.smulSet
β€”HasSSubset.SSubset.ne
Set.instIrreflSSubset
smul_eq_smul_of_subset
HasSSubset.SSubset.subset
Set.instIsNonstrictStrictOrderSubsetSSubset
of_orbit πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MulAction.stabilizer
MulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
MulAction.orbit
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.instMulAction
β€”MulAction.isBlock_iff_smul_eq_of_nonempty
mul_mem_cancel_left
Subgroup.instSubgroupClass
mul_mem_cancel_right
SemigroupAction.mul_smul
Submonoid.smul_def
MulAction.smul_orbit
of_subgroup_of_conjugate πŸ“–mathematicalMulAction.IsBlock
Subgroup
SetLike.instMembership
Subgroup.instSetLike
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
Subgroup.map
MulEquiv.toMonoidHom
Monoid.toMulOneClass
DFunLike.coe
MonoidHom
MulAut
MulOne.toMul
MulOneClass.toMulOne
MulAut.instGroup
MonoidHom.instFunLike
MulAut.conj
Set
Set.smulSet
β€”MulAction.isBlock_iff_smul_eq_or_disjoint
Subgroup.mem_map
SetLike.coe_mem
smul_smul
inv_mul_cancel_right
smul_eq_or_disjoint
Set.disjoint_image_of_injective
MulAction.injective
of_subset πŸ“–mathematicalβ€”MulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set.iInter
Set
Set.instMembership
Set.smulSet
β€”Set.eq_empty_or_nonempty
Set.iInter_congr_Prop
Set.smul_set_empty
Set.iInter_of_empty
instIsEmptyFalse
Set.iInter_univ
Set.biInter_subset_of_mem
MulAction.exists_smul_eq
Set.Finite.subset
Set.Finite.map
smul_smul
MulAction.mem_stabilizer_iff
MulAction.mem_stabilizer_set_iff_subset_smul_set
MulAction.isBlock_iff_smul_eq_of_nonempty
inv_smul_smul
SemigroupAction.mul_smul
Set.mem_smul_set_iff_inv_smul_mem
inv_inv
smul_eq_iff_eq_inv_smul
of_subsingleton πŸ“–mathematicalSet.SubsingletonMulAction.IsBlockβ€”Set.Subsingleton.induction_on
empty
singleton
orbit πŸ“–mathematicalβ€”MulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
MulAction.orbit
β€”MulAction.IsFixedBlock.isBlock
MulAction.IsFixedBlock.orbit
orbit_of_normal πŸ“–mathematicalβ€”MulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
MulAction.orbit
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.instMulAction
β€”MulAction.isBlock_iff_smul_eq_or_disjoint
MulAction.smul_orbit_eq_orbit_smul
MulAction.orbit.eq_or_disjoint
orbit_stabilizer_eq πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set
Set.instMembership
MulAction.orbit
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
Set.mulActionSet
Subgroup.toGroup
Subgroup.instMulAction
β€”Set.ext
Set.smul_mem_smul_set_iff
MulAction.exists_smul_eq
smul_eq_of_mem
pairwiseDisjoint_range_smul πŸ“–mathematicalMulAction.IsBlockSet.PairwiseDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.range
Set.smulSet
β€”MulAction.isBlock_iff_pairwiseDisjoint_range_smul
preimage πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set.preimage
DFunLike.coe
MulActionHom
instFunLikeMulActionHom
β€”Group.preimage_smul_setβ‚›β‚—
instMulActionSemiHomClassMulActionHom
Disjoint.preimage
singleton πŸ“–mathematicalβ€”MulAction.IsBlock
Set
Set.instSingletonSet
β€”Set.smul_set_singleton
smul_eq_of_mem πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set
Set.instMembership
Set.smulSetβ€”MulAction.isBlock_iff_smul_eq_of_mem
smul_eq_of_nonempty πŸ“–β€”MulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set.Nonempty
Set
Set.instInter
Set.smulSet
β€”β€”MulAction.isBlock_iff_smul_eq_of_nonempty
smul_eq_or_disjoint πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set
Set.smulSet
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”MulAction.isBlock_iff_smul_eq_or_disjoint
smul_eq_smul_of_nonempty πŸ“–β€”MulAction.IsBlock
Set.Nonempty
Set
Set.instInter
Set.smulSet
β€”β€”MulAction.isBlock_iff_smul_eq_smul_of_nonempty
smul_eq_smul_of_subset πŸ“–β€”MulAction.IsBlock
Set
Set.instHasSubset
Set.smulSet
β€”β€”Set.smul_set_empty
Disjoint.eq_bot_of_le
smul_eq_smul_or_disjoint πŸ“–mathematicalMulAction.IsBlockSet
Set.smulSet
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”MulAction.isBlock_iff_smul_eq_smul_or_disjoint
stabilizer_le πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set
Set.instMembership
Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MulAction.stabilizer
Set.mulActionSet
β€”smul_eq_of_nonempty
Set.smul_mem_smul_set_iff
subgroup πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.instMulAction
β€”β€”
subsingleton_of_card_lt πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Nat.card
Set.ncard
Set
MulAction.orbit
Set.smulSet
Set.Subsingletonβ€”Set.eq_empty_or_nonempty
Set.ncard_empty
Nat.instAtLeastTwoHAddOfNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
not_le
lt_iff_not_ge
ncard_block_mul_ncard_orbit_eq
Set.ncard_le_one_iff_eq
Set.toFinite
Subtype.finite
Set.subsingleton_empty
Set.subsingleton_singleton
subtype_val_preimage πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
SubMulAction
SetLike.instMembership
SubMulAction.instSetLike
SubMulAction.smul'
Monoid.toMulAction
IsScalarTower.left
Set.preimage
β€”preimage
translate πŸ“–mathematicalMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set
Set.smulSet
β€”MulAction.isBlock_top
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
Subgroup.map_comap_eq_self_of_surjective
MulEquiv.surjective
of_subgroup_of_conjugate
Subgroup.comap_top
univ πŸ“–mathematicalβ€”MulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set.univ
β€”MulAction.IsFixedBlock.isBlock
MulAction.IsFixedBlock.univ

MulAction.IsBlockSystem

Theorems

NameKindAssumesProvesValidatesDepends On
of_normal πŸ“–mathematicalβ€”MulAction.IsBlockSystem
Set.range
Set
MulAction.orbit
Subgroup
SetLike.instMembership
Subgroup.instSetLike
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
β€”MulAction.IsPartition.of_orbits
MulAction.IsBlock.orbit_of_normal

MulAction.IsFixedBlock

Theorems

NameKindAssumesProvesValidatesDepends On
isBlock πŸ“–mathematicalMulAction.IsFixedBlockMulAction.IsBlockβ€”instIsEmptyFalse
isInvariantBlock πŸ“–mathematicalMulAction.IsFixedBlockMulAction.IsInvariantBlockβ€”Eq.le
orbit πŸ“–mathematicalβ€”MulAction.IsFixedBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
MulAction.orbit
β€”MulAction.smul_orbit
univ πŸ“–mathematicalβ€”MulAction.IsFixedBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set.univ
β€”Set.smul_set_univ

MulAction.IsInvariantBlock

Theorems

NameKindAssumesProvesValidatesDepends On
isBlock πŸ“–mathematicalMulAction.IsInvariantBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
MulAction.IsBlockβ€”MulAction.IsFixedBlock.isBlock
isFixedBlock
isFixedBlock πŸ“–mathematicalMulAction.IsInvariantBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
MulAction.IsFixedBlockβ€”MulAction.isInvariantBlock_iff_isFixedBlock

MulAction.IsPartition

Theorems

NameKindAssumesProvesValidatesDepends On
of_orbits πŸ“–mathematicalβ€”Setoid.IsPartition
Set.range
Set
MulAction.orbit
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”Set.PairwiseDisjoint.isPartition_of_exists_of_ne_empty
MulAction.orbit.pairwiseDisjoint
MulAction.mem_orbit_self
Set.Nonempty.ne_empty
MulAction.nonempty_orbit

MulAction.IsTrivialBlock

Theorems

NameKindAssumesProvesValidatesDepends On
image πŸ“–mathematicalDFunLike.coe
MulActionHom
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
instFunLikeMulActionHom
MulAction.IsTrivialBlock
Set.imageβ€”Set.Subsingleton.image
Set.image_univ
isBlock πŸ“–mathematicalMulAction.IsTrivialBlockMulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”MulAction.IsBlock.of_subsingleton
MulAction.IsBlock.univ
preimage πŸ“–mathematicalDFunLike.coe
MulActionHom
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
instFunLikeMulActionHom
MulAction.IsTrivialBlock
Set.preimageβ€”Set.Subsingleton.preimage
Set.preimage_univ
smul πŸ“–mathematicalMulAction.IsTrivialBlockSet
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”Function.Injective.subsingleton_image_iff
MulAction.injective
Set.image_smul
Set.image_univ_of_surjective
MulAction.surjective
smul_iff πŸ“–mathematicalβ€”MulAction.IsTrivialBlock
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”inv_smul_smul
smul

MulAction.orbit

Theorems

NameKindAssumesProvesValidatesDepends On
eq_or_disjoint πŸ“–mathematicalβ€”MulAction.orbit
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”em
pairwiseDisjoint πŸ“–mathematicalβ€”Set.PairwiseDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.range
MulAction.orbit
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
eq_or_disjoint

---

← Back to Index