Documentation Verification Report

CardCommute

📁 Source: Mathlib/GroupTheory/GroupAction/CardCommute.lean

Statistics

MetricCount
Definitions0
Theoremscard_eq_sum_card_addGroup_sub_card_stabilizer, card_eq_sum_card_addGroup_sub_card_stabilizer', card_eq_sum_card_group_div_card_stabilizer, card_eq_sum_card_group_div_card_stabilizer', card_comm_eq_card_conjClasses_mul_card, instInfiniteProdSubtypeCommute
6
Total6

AddAction

Theorems

NameKindAssumesProvesValidatesDepends On
card_eq_sum_card_addGroup_sub_card_stabilizer 📖mathematicalFintype.card
Finset.sum
orbitRel
Nat.instAddCommMonoid
Finset.univ
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
stabilizer
Quotient.out
card_eq_sum_card_addGroup_sub_card_stabilizer'
Quotient.out_eq'
card_eq_sum_card_addGroup_sub_card_stabilizer' 📖mathematicalorbitRel
Quotient.mk''
Fintype.card
Finset.sum
Nat.instAddCommMonoid
Finset.univ
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
stabilizer
Fintype.card_congr
Fintype.card_prod
Fintype.card_pos_iff
Zero.instNonempty
Finset.sum_congr
Fintype.card_sigma

MulAction

Theorems

NameKindAssumesProvesValidatesDepends On
card_eq_sum_card_group_div_card_stabilizer 📖mathematicalFintype.card
Finset.sum
orbitRel
Nat.instAddCommMonoid
Finset.univ
Subgroup
SetLike.instMembership
Subgroup.instSetLike
stabilizer
Quotient.out
card_eq_sum_card_group_div_card_stabilizer'
Quotient.out_eq'
card_eq_sum_card_group_div_card_stabilizer' 📖mathematicalorbitRel
Quotient.mk''
Fintype.card
Finset.sum
Nat.instAddCommMonoid
Finset.univ
Subgroup
SetLike.instMembership
Subgroup.instSetLike
stabilizer
Fintype.card_congr
Fintype.card_prod
Fintype.card_pos_iff
One.instNonempty
Finset.sum_congr

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
card_comm_eq_card_conjClasses_mul_card 📖mathematicalNat.card
Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ConjClasses
Nat.card_eq_fintype_card
Fintype.card_congr
Fintype.card_sigma
Fintype.sum_equiv
Fintype.card_congr'
mul_inv_eq_iff_eq_mul
MulAction.sum_card_fixedBy_eq_card_orbits_mul_card_group
Setoid.ext
Setoid.comm'
isConj_iff
mul_comm
Nat.card_eq_zero_of_infinite
instInfiniteProdSubtypeCommute
MulZeroClass.zero_mul
instInfiniteProdSubtypeCommute 📖mathematicalInfinite
Commute
Infinite.of_injective

---

← Back to Index