| Name | Category | Theorems |
instDivInvMonoid π | CompOp | 54 mathmath: smul_def, fixedPoints_eq_center, toConjAct_inv, toConjAct_mul, stabilizer_eq_centralizer, CongruenceSubgroup.exists_Gamma_le_conj', CongruenceSubgroup.conjGL_coe, forall, IsCusp.of_isFiniteRelIndex_conj, toConjAct_zero, SlashInvariantForm.coe_translate, Subgroup.Normal.conjAct, Subgroup.Commensurable.commensurable_conj, Subgroup.conjAct_pointwise_smul_iff, lipschitzGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, spinGroup.units_involute_act_eq_conjAct, Subgroup.Commensurable.commensurator_mem_iff, spinGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, spinGroup.conjAct_smul_range_ΞΉ, ofConjAct_zero, CongruenceSubgroup.IsArithmetic.conj, CongruenceSubgroup.Gamma_cong_eq_self, units_smul_def, Subgroup.normalCore_eq_iInf_conjAct, CongruenceSubgroup.isArithmetic_conj_SL2Z, of_mul_symm_eq, pinGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, CuspForm.coe_translate, Unitary.toAlgEquiv_conjStarAlgAut, toConjAct_smul, pinGroup.conjAct_smul_range_ΞΉ, val_unitsCentralizerEquiv_symm_apply_coe, Subgroup.Commensurable.commensurable_inv, Unitary.toRingEquiv_conjStarAlgAut, Subgroup.Commensurable.conj, ofConjAct_toConjAct, Equiv.Perm.OnCycleFactors.Subgroup.Centralizer.toConjAct_smul_mem_cycleFactorsFinset, Subgroup.conjAct_pointwise_smul_eq_self, Subgroup.Commensurable.commensurator'_mem_iff, Equiv.Perm.cycleFactorsFinset_conj, CongruenceSubgroup.conj_cong_is_cong, ofConjAct_mul, ofConjAct_inv, to_mul_symm_eq, ModularForm.coe_translate, Equiv.Perm.mem_conj_support, toConjAct_ofConjAct, toConjAct_one, ofConjAct_one, Subgroup.IsArithmetic.conj, lipschitzGroup.conjAct_smul_range_ΞΉ, IsCusp.smul, smul_eq_mulAut_conj, Subgroup.centralizer_eq_comap_stabilizer
|
instFintype π | CompOp | 1 mathmath: card
|
instGroup π | CompOp | 13 mathmath: stabilizer_eq_centralizer, val_unitsCentralizerEquiv_apply_coe, Unitary.toAlgEquiv_conjStarAlgAut, val_unitsCentralizerEquiv_symm_apply_coe, Subgroup.Commensurable.commensurable_inv, Unitary.toRingEquiv_conjStarAlgAut, Subgroup.Commensurable.commensurator'_mem_iff, Module.End.mulSemiringActionToAlgEquiv_conjAct_surjective, orbitRel_conjAct, Equiv.Perm.mem_conj_support, ConjClasses.card_carrier, Subgroup.nat_card_centralizer_nat_card_stabilizer, Subgroup.centralizer_eq_comap_stabilizer
|
instInhabited π | CompOp | β |
instMulDistribMulAction π | CompOp | 29 mathmath: fixedPoints_eq_center, stabilizer_eq_centralizer, CongruenceSubgroup.exists_Gamma_le_conj', CongruenceSubgroup.conjGL_coe, val_unitsCentralizerEquiv_apply_coe, IsCusp.of_isFiniteRelIndex_conj, SlashInvariantForm.coe_translate, Subgroup.Normal.conjAct, Subgroup.Commensurable.commensurable_conj, Subgroup.conjAct_pointwise_smul_iff, Subgroup.Commensurable.commensurator_mem_iff, CongruenceSubgroup.IsArithmetic.conj, CongruenceSubgroup.Gamma_cong_eq_self, Subgroup.normalCore_eq_iInf_conjAct, CongruenceSubgroup.isArithmetic_conj_SL2Z, CuspForm.coe_translate, val_unitsCentralizerEquiv_symm_apply_coe, Subgroup.Commensurable.commensurable_inv, Subgroup.Commensurable.conj, Subgroup.conjAct_pointwise_smul_eq_self, Subgroup.Commensurable.commensurator'_mem_iff, CongruenceSubgroup.conj_cong_is_cong, orbitRel_conjAct, ModularForm.coe_translate, ConjClasses.card_carrier, Subgroup.nat_card_centralizer_nat_card_stabilizer, Subgroup.IsArithmetic.conj, IsCusp.smul, Subgroup.centralizer_eq_comap_stabilizer
|
instSMul π | CompOp | 15 mathmath: smul_def, smulCommClassβ, smulCommClassβ', smulCommClass', smulCommClass, toConjAct_smul, Equiv.Perm.mem_cycleFactorsFinset_conj', Equiv.Perm.OnCycleFactors.Subgroup.Centralizer.toConjAct_smul_mem_cycleFactorsFinset, Subgroup.val_conj_smul, Equiv.Perm.cycleFactorsFinset_conj_eq, mem_orbit_conjAct, Equiv.Perm.cycleFactorsFinset_conj, orbit_eq_carrier_conjClasses, Equiv.Perm.mem_conj_support, smul_eq_mulAut_conj
|
ofConjAct π | CompOp | 13 mathmath: smul_def, ofConjAct_zero, units_smul_def, of_mul_symm_eq, val_unitsCentralizerEquiv_symm_apply_coe, ofConjAct_toConjAct, ofConjAct_mul, ofConjAct_inv, to_mul_symm_eq, Equiv.Perm.mem_conj_support, toConjAct_ofConjAct, ofConjAct_one, smul_eq_mulAut_conj
|
rec π | CompOp | β |
toConjAct π | CompOp | 36 mathmath: toConjAct_inv, toConjAct_mul, stabilizer_eq_centralizer, CongruenceSubgroup.exists_Gamma_le_conj', CongruenceSubgroup.conjGL_coe, forall, IsCusp.of_isFiniteRelIndex_conj, toConjAct_zero, SlashInvariantForm.coe_translate, Subgroup.conjAct_pointwise_smul_iff, lipschitzGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, spinGroup.units_involute_act_eq_conjAct, Subgroup.Commensurable.commensurator_mem_iff, spinGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, spinGroup.conjAct_smul_range_ΞΉ, CongruenceSubgroup.IsArithmetic.conj, CongruenceSubgroup.isArithmetic_conj_SL2Z, of_mul_symm_eq, pinGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, CuspForm.coe_translate, Unitary.toAlgEquiv_conjStarAlgAut, toConjAct_smul, pinGroup.conjAct_smul_range_ΞΉ, Unitary.toRingEquiv_conjStarAlgAut, ofConjAct_toConjAct, Equiv.Perm.OnCycleFactors.Subgroup.Centralizer.toConjAct_smul_mem_cycleFactorsFinset, Subgroup.conjAct_pointwise_smul_eq_self, Equiv.Perm.cycleFactorsFinset_conj, to_mul_symm_eq, ModularForm.coe_translate, toConjAct_ofConjAct, toConjAct_one, Subgroup.IsArithmetic.conj, lipschitzGroup.conjAct_smul_range_ΞΉ, IsCusp.smul, Subgroup.centralizer_eq_comap_stabilizer
|
unitsMulDistribMulAction π | CompOp | β |
unitsScalar π | CompOp | 8 mathmath: unitsSMulCommClass', unitsSMulCommClass, lipschitzGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, spinGroup.units_involute_act_eq_conjAct, spinGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, units_smul_def, pinGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, units_continuousConstSMul
|