Documentation Verification Report

ConjAct

πŸ“ Source: Mathlib/GroupTheory/GroupAction/ConjAct.lean

Statistics

MetricCount
DefinitionsconjAction, conjMulDistribMulAction, instDivInvMonoid, instFintype, instGroup, instInhabited, instMulDistribMulAction, instSMul, ofConjAct, rec, toConjAct, unitsMulDistribMulAction, unitsScalar, conjNormal, unitsCentralizerEquiv
15
Theoremsval_conj_smul, card, fixedPoints_eq_center, forall, mem_orbit_conjAct, normal_of_characteristic_of_normal, ofConjAct_inv, ofConjAct_mul, ofConjAct_one, ofConjAct_toConjAct, of_mul_symm_eq, orbitRel_conjAct, orbit_eq_carrier_conjClasses, smulCommClass, smulCommClass', smul_def, smul_eq_mulAut_conj, stabilizer_eq_centralizer, toConjAct_inv, toConjAct_mul, toConjAct_ofConjAct, toConjAct_one, toConjAct_smul, to_mul_symm_eq, unitsSMulCommClass, unitsSMulCommClass', units_smul_def, conjNormal_apply, conjNormal_inv_apply, conjNormal_symm_apply, conjNormal_val, centralizer_eq_comap_stabilizer, val_unitsCentralizerEquiv_apply_coe, val_unitsCentralizerEquiv_symm_apply_coe
34
Total49

ConjAct

Definitions

NameCategoryTheorems
instDivInvMonoid πŸ“–CompOp
54 mathmath: smul_def, fixedPoints_eq_center, toConjAct_inv, toConjAct_mul, stabilizer_eq_centralizer, CongruenceSubgroup.exists_Gamma_le_conj', CongruenceSubgroup.conjGL_coe, forall, IsCusp.of_isFiniteRelIndex_conj, toConjAct_zero, SlashInvariantForm.coe_translate, Subgroup.Normal.conjAct, Subgroup.Commensurable.commensurable_conj, Subgroup.conjAct_pointwise_smul_iff, lipschitzGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, spinGroup.units_involute_act_eq_conjAct, Subgroup.Commensurable.commensurator_mem_iff, spinGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, spinGroup.conjAct_smul_range_ΞΉ, ofConjAct_zero, CongruenceSubgroup.IsArithmetic.conj, CongruenceSubgroup.Gamma_cong_eq_self, units_smul_def, Subgroup.normalCore_eq_iInf_conjAct, CongruenceSubgroup.isArithmetic_conj_SL2Z, of_mul_symm_eq, pinGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, CuspForm.coe_translate, Unitary.toAlgEquiv_conjStarAlgAut, toConjAct_smul, pinGroup.conjAct_smul_range_ΞΉ, val_unitsCentralizerEquiv_symm_apply_coe, Subgroup.Commensurable.commensurable_inv, Unitary.toRingEquiv_conjStarAlgAut, Subgroup.Commensurable.conj, ofConjAct_toConjAct, Equiv.Perm.OnCycleFactors.Subgroup.Centralizer.toConjAct_smul_mem_cycleFactorsFinset, Subgroup.conjAct_pointwise_smul_eq_self, Subgroup.Commensurable.commensurator'_mem_iff, Equiv.Perm.cycleFactorsFinset_conj, CongruenceSubgroup.conj_cong_is_cong, ofConjAct_mul, ofConjAct_inv, to_mul_symm_eq, ModularForm.coe_translate, Equiv.Perm.mem_conj_support, toConjAct_ofConjAct, toConjAct_one, ofConjAct_one, Subgroup.IsArithmetic.conj, lipschitzGroup.conjAct_smul_range_ΞΉ, IsCusp.smul, smul_eq_mulAut_conj, Subgroup.centralizer_eq_comap_stabilizer
instFintype πŸ“–CompOp
1 mathmath: card
instGroup πŸ“–CompOp
13 mathmath: stabilizer_eq_centralizer, val_unitsCentralizerEquiv_apply_coe, Unitary.toAlgEquiv_conjStarAlgAut, val_unitsCentralizerEquiv_symm_apply_coe, Subgroup.Commensurable.commensurable_inv, Unitary.toRingEquiv_conjStarAlgAut, Subgroup.Commensurable.commensurator'_mem_iff, Module.End.mulSemiringActionToAlgEquiv_conjAct_surjective, orbitRel_conjAct, Equiv.Perm.mem_conj_support, ConjClasses.card_carrier, Subgroup.nat_card_centralizer_nat_card_stabilizer, Subgroup.centralizer_eq_comap_stabilizer
instInhabited πŸ“–CompOpβ€”
instMulDistribMulAction πŸ“–CompOp
29 mathmath: fixedPoints_eq_center, stabilizer_eq_centralizer, CongruenceSubgroup.exists_Gamma_le_conj', CongruenceSubgroup.conjGL_coe, val_unitsCentralizerEquiv_apply_coe, IsCusp.of_isFiniteRelIndex_conj, SlashInvariantForm.coe_translate, Subgroup.Normal.conjAct, Subgroup.Commensurable.commensurable_conj, Subgroup.conjAct_pointwise_smul_iff, Subgroup.Commensurable.commensurator_mem_iff, CongruenceSubgroup.IsArithmetic.conj, CongruenceSubgroup.Gamma_cong_eq_self, Subgroup.normalCore_eq_iInf_conjAct, CongruenceSubgroup.isArithmetic_conj_SL2Z, CuspForm.coe_translate, val_unitsCentralizerEquiv_symm_apply_coe, Subgroup.Commensurable.commensurable_inv, Subgroup.Commensurable.conj, Subgroup.conjAct_pointwise_smul_eq_self, Subgroup.Commensurable.commensurator'_mem_iff, CongruenceSubgroup.conj_cong_is_cong, orbitRel_conjAct, ModularForm.coe_translate, ConjClasses.card_carrier, Subgroup.nat_card_centralizer_nat_card_stabilizer, Subgroup.IsArithmetic.conj, IsCusp.smul, Subgroup.centralizer_eq_comap_stabilizer
instSMul πŸ“–CompOp
15 mathmath: smul_def, smulCommClassβ‚€, smulCommClassβ‚€', smulCommClass', smulCommClass, toConjAct_smul, Equiv.Perm.mem_cycleFactorsFinset_conj', Equiv.Perm.OnCycleFactors.Subgroup.Centralizer.toConjAct_smul_mem_cycleFactorsFinset, Subgroup.val_conj_smul, Equiv.Perm.cycleFactorsFinset_conj_eq, mem_orbit_conjAct, Equiv.Perm.cycleFactorsFinset_conj, orbit_eq_carrier_conjClasses, Equiv.Perm.mem_conj_support, smul_eq_mulAut_conj
ofConjAct πŸ“–CompOp
13 mathmath: smul_def, ofConjAct_zero, units_smul_def, of_mul_symm_eq, val_unitsCentralizerEquiv_symm_apply_coe, ofConjAct_toConjAct, ofConjAct_mul, ofConjAct_inv, to_mul_symm_eq, Equiv.Perm.mem_conj_support, toConjAct_ofConjAct, ofConjAct_one, smul_eq_mulAut_conj
rec πŸ“–CompOpβ€”
toConjAct πŸ“–CompOp
36 mathmath: toConjAct_inv, toConjAct_mul, stabilizer_eq_centralizer, CongruenceSubgroup.exists_Gamma_le_conj', CongruenceSubgroup.conjGL_coe, forall, IsCusp.of_isFiniteRelIndex_conj, toConjAct_zero, SlashInvariantForm.coe_translate, Subgroup.conjAct_pointwise_smul_iff, lipschitzGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, spinGroup.units_involute_act_eq_conjAct, Subgroup.Commensurable.commensurator_mem_iff, spinGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, spinGroup.conjAct_smul_range_ΞΉ, CongruenceSubgroup.IsArithmetic.conj, CongruenceSubgroup.isArithmetic_conj_SL2Z, of_mul_symm_eq, pinGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, CuspForm.coe_translate, Unitary.toAlgEquiv_conjStarAlgAut, toConjAct_smul, pinGroup.conjAct_smul_range_ΞΉ, Unitary.toRingEquiv_conjStarAlgAut, ofConjAct_toConjAct, Equiv.Perm.OnCycleFactors.Subgroup.Centralizer.toConjAct_smul_mem_cycleFactorsFinset, Subgroup.conjAct_pointwise_smul_eq_self, Equiv.Perm.cycleFactorsFinset_conj, to_mul_symm_eq, ModularForm.coe_translate, toConjAct_ofConjAct, toConjAct_one, Subgroup.IsArithmetic.conj, lipschitzGroup.conjAct_smul_range_ΞΉ, IsCusp.smul, Subgroup.centralizer_eq_comap_stabilizer
unitsMulDistribMulAction πŸ“–CompOpβ€”
unitsScalar πŸ“–CompOp
8 mathmath: unitsSMulCommClass', unitsSMulCommClass, lipschitzGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, spinGroup.units_involute_act_eq_conjAct, spinGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, units_smul_def, pinGroup.conjAct_smul_ΞΉ_mem_range_ΞΉ, units_continuousConstSMul

Theorems

NameKindAssumesProvesValidatesDepends On
card πŸ“–mathematicalβ€”Fintype.card
ConjAct
instFintype
β€”β€”
fixedPoints_eq_center πŸ“–mathematicalβ€”MulAction.fixedPoints
ConjAct
DivInvMonoid.toMonoid
instDivInvMonoid
Group.toDivInvMonoid
MulDistribMulAction.toMulAction
instMulDistribMulAction
SetLike.coe
Subgroup
Subgroup.instSetLike
Subgroup.center
β€”Set.ext
forall πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
ConjAct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
instDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
toConjAct
β€”β€”
mem_orbit_conjAct πŸ“–mathematicalβ€”Set
Set.instMembership
MulAction.orbit
ConjAct
instSMul
Group.toDivInvMonoid
IsConj
DivInvMonoid.toMonoid
β€”isConj_comm
isConj_iff
MulAction.mem_orbit_iff
normal_of_characteristic_of_normal πŸ“–mathematicalβ€”Subgroup.Normal
Subgroup.map
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.subtype
β€”Subgroup.apply_coe_mem_map
SetLike.ext_iff
Subgroup.Characteristic.fixed
ofConjAct_inv πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
ConjAct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
instDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
ofConjAct
DivInvMonoid.toInv
β€”β€”
ofConjAct_mul πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
ConjAct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
instDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
ofConjAct
β€”β€”
ofConjAct_one πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
ConjAct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
instDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
ofConjAct
MulOne.toOne
β€”β€”
ofConjAct_toConjAct πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
ConjAct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
instDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
ofConjAct
toConjAct
β€”β€”
of_mul_symm_eq πŸ“–mathematicalβ€”MulEquiv.symm
ConjAct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
instDivInvMonoid
ofConjAct
toConjAct
β€”β€”
orbitRel_conjAct πŸ“–mathematicalβ€”MulAction.orbitRel
ConjAct
instGroup
MulDistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instMulDistribMulAction
IsConj
β€”MulAction.orbitRel_apply
mem_orbit_conjAct
orbit_eq_carrier_conjClasses πŸ“–mathematicalβ€”MulAction.orbit
ConjAct
instSMul
Group.toDivInvMonoid
ConjClasses.carrier
DivInvMonoid.toMonoid
β€”Set.ext
ConjClasses.mem_carrier_iff_mk_eq
ConjClasses.mk_eq_mk_iff_isConj
mem_orbit_conjAct
smulCommClass πŸ“–mathematicalβ€”SMulCommClass
ConjAct
instSMul
Group.toDivInvMonoid
β€”smul_def
mul_smul_comm
smul_mul_assoc
smulCommClass' πŸ“–mathematicalβ€”SMulCommClass
ConjAct
instSMul
Group.toDivInvMonoid
β€”SMulCommClass.symm
smulCommClass
smul_def πŸ“–mathematicalβ€”ConjAct
instSMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DFunLike.coe
MulEquiv
instDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
ofConjAct
DivInvMonoid.toInv
β€”β€”
smul_eq_mulAut_conj πŸ“–mathematicalβ€”ConjAct
instSMul
Group.toDivInvMonoid
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MonoidHom
MulAut
MulAut.instGroup
MonoidHom.instFunLike
MulAut.conj
instDivInvMonoid
ofConjAct
β€”β€”
stabilizer_eq_centralizer πŸ“–mathematicalβ€”MulAction.stabilizer
ConjAct
instGroup
MulDistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instMulDistribMulAction
Subgroup.centralizer
Set
Set.instSingletonSet
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
instDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
toConjAct
β€”le_antisymm
eq_mul_inv_iff_mul_eq
mul_inv_eq_of_eq_mul
toConjAct_inv πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
ConjAct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
instDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
toConjAct
DivInvMonoid.toInv
β€”β€”
toConjAct_mul πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
ConjAct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
instDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
toConjAct
β€”β€”
toConjAct_ofConjAct πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
ConjAct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
instDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
toConjAct
ofConjAct
β€”β€”
toConjAct_one πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
ConjAct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
instDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
toConjAct
MulOne.toOne
β€”β€”
toConjAct_smul πŸ“–mathematicalβ€”ConjAct
instSMul
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
instDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
toConjAct
DivInvMonoid.toInv
β€”β€”
to_mul_symm_eq πŸ“–mathematicalβ€”MulEquiv.symm
ConjAct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
instDivInvMonoid
toConjAct
ofConjAct
β€”β€”
unitsSMulCommClass πŸ“–mathematicalβ€”SMulCommClass
ConjAct
Units
unitsScalar
β€”units_smul_def
mul_smul_comm
smul_mul_assoc
unitsSMulCommClass' πŸ“–mathematicalβ€”SMulCommClass
ConjAct
Units
unitsScalar
β€”SMulCommClass.symm
unitsSMulCommClass
units_smul_def πŸ“–mathematicalβ€”ConjAct
Units
unitsScalar
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Units.val
DFunLike.coe
MulEquiv
DivInvMonoid.toMonoid
instDivInvMonoid
Units.instDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
ofConjAct
Units.instInv
β€”β€”

ConjAct.Subgroup

Definitions

NameCategoryTheorems
conjAction πŸ“–CompOp
1 mathmath: val_conj_smul
conjMulDistribMulAction πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
val_conj_smul πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
Subgroup.instSetLike
ConjAct
conjAction
ConjAct.instSMul
Group.toDivInvMonoid
β€”β€”

MulAut

Definitions

NameCategoryTheorems
conjNormal πŸ“–CompOp
4 mathmath: conjNormal_symm_apply, conjNormal_val, conjNormal_inv_apply, conjNormal_apply

Theorems

NameKindAssumesProvesValidatesDepends On
conjNormal_apply πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
Subgroup.instSetLike
DFunLike.coe
MulEquiv
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
MonoidHom
MulAut
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
conjNormal
MulOne.toMul
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
conjNormal_inv_apply πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
Subgroup.instSetLike
DFunLike.coe
MulEquiv
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
conjNormal
MulOne.toMul
β€”conjNormal_symm_apply
conjNormal_symm_apply πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
Subgroup.instSetLike
DFunLike.coe
MulEquiv
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
MonoidHom
MulAut
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
conjNormal
MulOne.toMul
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”inv_inv
conjNormal_val πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulAut
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.mul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
conjNormal
MulOne.toMul
Subgroup.toGroup
conj
β€”MulEquiv.ext

Subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
centralizer_eq_comap_stabilizer πŸ“–mathematicalβ€”centralizer
Set
Set.instSingletonSet
comap
ConjAct.instGroup
ConjAct
MulEquiv.toMonoidHom
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ConjAct.instDivInvMonoid
ConjAct.toConjAct
MulAction.stabilizer
MulDistribMulAction.toMulAction
ConjAct.instMulDistribMulAction
β€”ext
mul_inv_eq_iff_eq_mul

(root)

Definitions

NameCategoryTheorems
unitsCentralizerEquiv πŸ“–CompOp
2 mathmath: val_unitsCentralizerEquiv_apply_coe, val_unitsCentralizerEquiv_symm_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
val_unitsCentralizerEquiv_apply_coe πŸ“–mathematicalβ€”Units.val
ConjAct
Units
Subgroup
ConjAct.instGroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
MulDistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ConjAct.instMulDistribMulAction
DFunLike.coe
MulEquiv
Submonoid
Monoid.toMulOneClass
Submonoid.instSetLike
Submonoid.centralizer
Set
Set.instSingletonSet
Submonoid.toMonoid
Units.instMul
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
unitsCentralizerEquiv
β€”β€”
val_unitsCentralizerEquiv_symm_apply_coe πŸ“–mathematicalβ€”Submonoid
Monoid.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
Submonoid.centralizer
Set
Set.instSingletonSet
Units.val
Submonoid.toMonoid
DFunLike.coe
MulEquiv
ConjAct
Units
Subgroup
ConjAct.instGroup
Units.instGroup
Subgroup.instSetLike
MulAction.stabilizer
MulDistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ConjAct.instMulDistribMulAction
Subgroup.mul
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
unitsCentralizerEquiv
MulOne.toMul
MulOneClass.toMulOne
ConjAct.instDivInvMonoid
Units.instDivInvMonoid
ConjAct.ofConjAct
β€”β€”

---

← Back to Index