Documentation Verification Report

Basic

πŸ“ Source: Mathlib/GroupTheory/GroupAction/DomAct/Basic.lean

Statistics

MetricCount
DefinitionsDomAddAct, instAddActionForall, instAddCancelCommMonoidOfAddOpposite, instAddCancelMonoidOfAddOpposite, instAddCommGroupOfAddOpposite, instAddCommMonoidOfAddOpposite, instAddCommSemigroupOfAddOpposite, instAddGroupOfAddOpposite, instAddLeftCancelMonoidOfAddOpposite, instAddLeftCancelSemigroupOfAddOpposite, instAddMonoidOfAddOpposite, instAddOfAddOpposite, instAddRightCancelMonoidOfAddOpposite, instAddRightCancelSemigroupOfAddOpposite, instAddSemigroupOfAddOpposite, instAddZeroClassOfAddOpposite, instCommRingOfAddOpposite, instDivisionAddCommMonoidOfAddOpposite, instInvolutiveNegOfAddOpposite, instNegOfAddOpposite, instNegZeroClassOfAddOpposite, instNonAssocSemiringOfAddOpposite, instNonUnitalSemiringOfAddOpposite, instRingOfAddOpposite, instSemiringOfAddOpposite, instSubNegAddMonoidOfAddOpposite, instSubNegZeroMonoidOfAddOpposite, instSubtractionMonoidOfAddOpposite, instVAddForall, instZeroOfAddOpposite, mk, instCancelCommMonoidOfMulOpposite, instCancelMonoidOfMulOpposite, instCommGroupOfMulOpposite, instCommMonoidOfMulOpposite, instCommRingOfMulOpposite, instCommSemigroupOfMulOpposite, instDistribMulActionAddMonoidHom, instDistribMulActionForallOfMulAction, instDistribSMulForallOfSMul, instDivInvMonoidOfMulOpposite, instDivInvOneMonoidOfMulOpposite, instDivisionCommMonoidOfMulOpposite, instDivisionMonoidOfMulOpposite, instGroupOfMulOpposite, instInvOfMulOpposite, instInvOneClassOfMulOpposite, instInvolutiveInvOfMulOpposite, instLeftCancelMonoidOfMulOpposite, instLeftCancelSemigroupOfMulOpposite, instMonoidOfMulOpposite, instMulActionAddMonoidHomOfDistribMulAction, instMulActionForall, instMulActionMonoidHom, instMulDistribMulActionForallOfMulAction, instMulDistribMulActionMonoidHom, instMulOfMulOpposite, instMulOneClassOfMulOpposite, instNonAssocSemiringOfMulOpposite, instNonUnitalSemiringOfMulOpposite, instOneOfMulOpposite, instRightCancelMonoidOfMulOpposite, instRightCancelSemigroupOfMulOpposite, instRingOfMulOpposite, instSMulAddMonoidHom, instSMulForall, instSMulMonoidHom, instSMulZeroClassForallOfSMul, instSemigroupOfMulOpposite, instSemiringOfMulOpposite, mk, Β«term_α΅ˆα΅ƒα΅ƒΒ», Β«term_α΅ˆα΅α΅ƒΒ»
73
TheoremsinstFaithfulVAddForallOfNontrivial, instIsCancelAddOfAddOpposite, instIsLeftCancelAddOfAddOpposite, instIsRightCancelAddOfAddOpposite, instVAddCommClassForall, instVAddCommClassForall_1, instVAddCommClassForall_2, mk_add, mk_neg, mk_nsmul, mk_zero, mk_zsmul, symm_mk_add, symm_mk_neg, symm_mk_nsmul, symm_mk_zero, symm_mk_zsmul, vadd_apply, coe_smul_addMonoidHom, instFaithfulSMulForallOfNontrivial, instIsCancelMulOfMulOpposite, instIsLeftCancelMulOfMulOpposite, instIsRightCancelMulOfMulOpposite, instSMulCommClassAddMonoidHom, instSMulCommClassAddMonoidHom_1, instSMulCommClassForall, instSMulCommClassForall_1, instSMulCommClassForall_2, instSMulCommClassMonoidHom, mk_inv, mk_mul, mk_one, mk_pow, mk_smul_addMonoidHom_apply, mk_smul_monoidHom_apply, mk_zpow, smul_addMonoidHom_apply, smul_apply, smul_monoidHom_apply, symm_mk_inv, symm_mk_mul, symm_mk_one, symm_mk_pow, symm_mk_zpow
44
Total117

DomAddAct

Definitions

NameCategoryTheorems
instAddActionForall πŸ“–CompOpβ€”
instAddCancelCommMonoidOfAddOpposite πŸ“–CompOpβ€”
instAddCancelMonoidOfAddOpposite πŸ“–CompOpβ€”
instAddCommGroupOfAddOpposite πŸ“–CompOpβ€”
instAddCommMonoidOfAddOpposite πŸ“–CompOpβ€”
instAddCommSemigroupOfAddOpposite πŸ“–CompOpβ€”
instAddGroupOfAddOpposite πŸ“–CompOpβ€”
instAddLeftCancelMonoidOfAddOpposite πŸ“–CompOpβ€”
instAddLeftCancelSemigroupOfAddOpposite πŸ“–CompOpβ€”
instAddMonoidOfAddOpposite πŸ“–CompOp
2 mathmath: mk_nsmul, symm_mk_nsmul
instAddOfAddOpposite πŸ“–CompOp
5 mathmath: instIsLeftCancelAddOfAddOpposite, symm_mk_add, instIsCancelAddOfAddOpposite, mk_add, instIsRightCancelAddOfAddOpposite
instAddRightCancelMonoidOfAddOpposite πŸ“–CompOpβ€”
instAddRightCancelSemigroupOfAddOpposite πŸ“–CompOpβ€”
instAddSemigroupOfAddOpposite πŸ“–CompOpβ€”
instAddZeroClassOfAddOpposite πŸ“–CompOpβ€”
instCommRingOfAddOpposite πŸ“–CompOpβ€”
instDivisionAddCommMonoidOfAddOpposite πŸ“–CompOpβ€”
instInvolutiveNegOfAddOpposite πŸ“–CompOpβ€”
instNegOfAddOpposite πŸ“–CompOp
2 mathmath: symm_mk_neg, mk_neg
instNegZeroClassOfAddOpposite πŸ“–CompOpβ€”
instNonAssocSemiringOfAddOpposite πŸ“–CompOpβ€”
instNonUnitalSemiringOfAddOpposite πŸ“–CompOpβ€”
instRingOfAddOpposite πŸ“–CompOpβ€”
instSemiringOfAddOpposite πŸ“–CompOpβ€”
instSubNegAddMonoidOfAddOpposite πŸ“–CompOp
2 mathmath: mk_zsmul, symm_mk_zsmul
instSubNegZeroMonoidOfAddOpposite πŸ“–CompOpβ€”
instSubtractionMonoidOfAddOpposite πŸ“–CompOpβ€”
instVAddForall πŸ“–CompOp
6 mathmath: instVAddCommClassForall_1, instVAddCommClassForall_2, instVAddCommClassForall, translate_eq_domAddActMk_vadd, instFaithfulVAddForallOfNontrivial, vadd_apply
instZeroOfAddOpposite πŸ“–CompOp
2 mathmath: mk_zero, symm_mk_zero
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulVAddForallOfNontrivial πŸ“–mathematicalβ€”FaithfulVAdd
DomAddAct
instVAddForall
β€”Equiv.injective
FaithfulVAdd.eq_of_vadd_eq_vadd
exists_pair_ne
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Function.update_of_ne
Function.update_self
instIsCancelAddOfAddOpposite πŸ“–mathematicalβ€”IsCancelAdd
DomAddAct
instAddOfAddOpposite
β€”β€”
instIsLeftCancelAddOfAddOpposite πŸ“–mathematicalβ€”IsLeftCancelAdd
DomAddAct
instAddOfAddOpposite
β€”β€”
instIsRightCancelAddOfAddOpposite πŸ“–mathematicalβ€”IsRightCancelAdd
DomAddAct
instAddOfAddOpposite
β€”β€”
instVAddCommClassForall πŸ“–mathematicalβ€”VAddCommClass
DomAddAct
instVAddForall
Pi.instVAdd
β€”β€”
instVAddCommClassForall_1 πŸ“–mathematicalβ€”VAddCommClass
DomAddAct
Pi.instVAdd
instVAddForall
β€”β€”
instVAddCommClassForall_2 πŸ“–mathematicalβ€”VAddCommClass
DomAddAct
instVAddForall
β€”VAddCommClass.vadd_comm
mk_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomAddAct
EquivLike.toFunLike
Equiv.instEquivLike
instAddOfAddOpposite
AddOpposite.instAdd
β€”β€”
mk_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomAddAct
EquivLike.toFunLike
Equiv.instEquivLike
instNegOfAddOpposite
AddOpposite.instNeg
β€”β€”
mk_nsmul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomAddAct
EquivLike.toFunLike
Equiv.instEquivLike
AddMonoid.toNatSMul
instAddMonoidOfAddOpposite
AddOpposite.instAddMonoid
β€”β€”
mk_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomAddAct
EquivLike.toFunLike
Equiv.instEquivLike
instZeroOfAddOpposite
AddOpposite.instZero
β€”β€”
mk_zsmul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomAddAct
EquivLike.toFunLike
Equiv.instEquivLike
SubNegMonoid.toZSMul
instSubNegAddMonoidOfAddOpposite
AddOpposite.instSubNegMonoid
β€”β€”
symm_mk_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomAddAct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
instAddOfAddOpposite
AddOpposite.instAdd
β€”β€”
symm_mk_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomAddAct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
instNegOfAddOpposite
AddOpposite.instNeg
β€”β€”
symm_mk_nsmul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomAddAct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
AddMonoid.toNatSMul
instAddMonoidOfAddOpposite
AddOpposite.instAddMonoid
β€”β€”
symm_mk_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomAddAct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
instZeroOfAddOpposite
AddOpposite.instZero
β€”β€”
symm_mk_zsmul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomAddAct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
SubNegMonoid.toZSMul
instSubNegAddMonoidOfAddOpposite
AddOpposite.instSubNegMonoid
β€”β€”
vadd_apply πŸ“–mathematicalβ€”HVAdd.hVAdd
DomAddAct
instHVAdd
instVAddForall
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”β€”

DomMulAct

Definitions

NameCategoryTheorems
instCancelCommMonoidOfMulOpposite πŸ“–CompOpβ€”
instCancelMonoidOfMulOpposite πŸ“–CompOpβ€”
instCommGroupOfMulOpposite πŸ“–CompOpβ€”
instCommMonoidOfMulOpposite πŸ“–CompOpβ€”
instCommRingOfMulOpposite πŸ“–CompOpβ€”
instCommSemigroupOfMulOpposite πŸ“–CompOpβ€”
instDistribMulActionAddMonoidHom πŸ“–CompOpβ€”
instDistribMulActionForallOfMulAction πŸ“–CompOpβ€”
instDistribSMulForallOfSMul πŸ“–CompOpβ€”
instDivInvMonoidOfMulOpposite πŸ“–CompOp
2 mathmath: mk_zpow, symm_mk_zpow
instDivInvOneMonoidOfMulOpposite πŸ“–CompOpβ€”
instDivisionCommMonoidOfMulOpposite πŸ“–CompOpβ€”
instDivisionMonoidOfMulOpposite πŸ“–CompOpβ€”
instGroupOfMulOpposite πŸ“–CompOp
2 mathmath: mem_stabilizer_iff, stabilizerMulEquiv_apply
instInvOfMulOpposite πŸ“–CompOp
3 mathmath: MeasureTheory.addHaarScalarFactor_smul_inv_eq_distribHaarChar, mk_inv, symm_mk_inv
instInvOneClassOfMulOpposite πŸ“–CompOpβ€”
instInvolutiveInvOfMulOpposite πŸ“–CompOpβ€”
instLeftCancelMonoidOfMulOpposite πŸ“–CompOpβ€”
instLeftCancelSemigroupOfMulOpposite πŸ“–CompOpβ€”
instMonoidOfMulOpposite πŸ“–CompOp
15 mathmath: MeasureTheory.integral_domSMul, MeasureTheory.addHaarScalarFactor_smul_inv_eq_distribHaarChar, symm_mk_pow, MeasureTheory.Measure.domSMul_apply, MeasureTheory.addHaarScalarFactor_smul_eq_distribHaarChar_inv, MeasureTheory.Measure.IsAddHaarMeasure.domSMul, MeasureTheory.addHaarScalarFactor_smul_eq_distribHaarChar, MeasureTheory.Measure.addHaarScalarFactor_smul_congr, MeasureTheory.distribHaarChar_apply, MeasureTheory.Measure.Regular.domSMul, MeasureTheory.Measure.instSMulCommClassDomMulActNNReal, MeasureTheory.Measure.instSMulCommClassNNRealDomMulAct, mk_pow, MeasureTheory.Measure.addHaarScalarFactor_domSMul, MeasureTheory.Measure.addHaarScalarFactor_smul_congr'
instMulActionAddMonoidHomOfDistribMulAction πŸ“–CompOpβ€”
instMulActionForall πŸ“–CompOp
2 mathmath: mem_stabilizer_iff, stabilizerMulEquiv_apply
instMulActionMonoidHom πŸ“–CompOpβ€”
instMulDistribMulActionForallOfMulAction πŸ“–CompOpβ€”
instMulDistribMulActionMonoidHom πŸ“–CompOpβ€”
instMulOfMulOpposite πŸ“–CompOp
5 mathmath: instIsCancelMulOfMulOpposite, instIsLeftCancelMulOfMulOpposite, mk_mul, instIsRightCancelMulOfMulOpposite, symm_mk_mul
instMulOneClassOfMulOpposite πŸ“–CompOpβ€”
instNonAssocSemiringOfMulOpposite πŸ“–CompOp
2 mathmath: LinearEquiv.domMulActCongrRight_symm_apply, LinearEquiv.domMulActCongrRight_apply
instNonUnitalSemiringOfMulOpposite πŸ“–CompOpβ€”
instOneOfMulOpposite πŸ“–CompOp
2 mathmath: symm_mk_one, mk_one
instRightCancelMonoidOfMulOpposite πŸ“–CompOpβ€”
instRightCancelSemigroupOfMulOpposite πŸ“–CompOpβ€”
instRingOfMulOpposite πŸ“–CompOpβ€”
instSMulAddMonoidHom πŸ“–CompOp
5 mathmath: smul_addMonoidHom_apply, coe_smul_addMonoidHom, instSMulCommClassAddMonoidHom, instSMulCommClassAddMonoidHom_1, mk_smul_addMonoidHom_apply
instSMulForall πŸ“–CompOp
7 mathmath: instFaithfulSMulForallOfNontrivial, coe_smul_addMonoidHom, instSMulCommClassForall_1, coe_smul_linearMap, instSMulCommClassForall_2, instSMulCommClassForall, smul_apply
instSMulMonoidHom πŸ“–CompOp
3 mathmath: smul_monoidHom_apply, instSMulCommClassMonoidHom, mk_smul_monoidHom_apply
instSMulZeroClassForallOfSMul πŸ“–CompOpβ€”
instSemigroupOfMulOpposite πŸ“–CompOpβ€”
instSemiringOfMulOpposite πŸ“–CompOp
2 mathmath: LinearEquiv.domMulActCongrRight_symm_apply, LinearEquiv.domMulActCongrRight_apply
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_smul_addMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
DomMulAct
instSMulAddMonoidHom
instSMulForall
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
β€”β€”
instFaithfulSMulForallOfNontrivial πŸ“–mathematicalβ€”FaithfulSMul
DomMulAct
instSMulForall
β€”Equiv.injective
FaithfulSMul.eq_of_smul_eq_smul
exists_pair_ne
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Function.update_of_ne
Function.update_self
instIsCancelMulOfMulOpposite πŸ“–mathematicalβ€”IsCancelMul
DomMulAct
instMulOfMulOpposite
β€”β€”
instIsLeftCancelMulOfMulOpposite πŸ“–mathematicalβ€”IsLeftCancelMul
DomMulAct
instMulOfMulOpposite
β€”β€”
instIsRightCancelMulOfMulOpposite πŸ“–mathematicalβ€”IsRightCancelMul
DomMulAct
instMulOfMulOpposite
β€”β€”
instSMulCommClassAddMonoidHom πŸ“–mathematicalβ€”SMulCommClass
DomMulAct
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instSMulAddMonoidHom
β€”Function.Injective.smulCommClass
instSMulCommClassForall_2
DFunLike.coe_injective
instSMulCommClassAddMonoidHom_1 πŸ“–mathematicalβ€”SMulCommClass
DomMulAct
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instSMulAddMonoidHom
SMulZeroClass.toSMul
instZeroAddMonoidHom
AddMonoidHom.instSMulZeroClassOfDistribSMul
β€”Function.Injective.smulCommClass
instSMulCommClassForall
DFunLike.coe_injective
instSMulCommClassForall πŸ“–mathematicalβ€”SMulCommClass
DomMulAct
instSMulForall
Pi.instSMul
β€”β€”
instSMulCommClassForall_1 πŸ“–mathematicalβ€”SMulCommClass
DomMulAct
Pi.instSMul
instSMulForall
β€”β€”
instSMulCommClassForall_2 πŸ“–mathematicalβ€”SMulCommClass
DomMulAct
instSMulForall
β€”SMulCommClass.smul_comm
instSMulCommClassMonoidHom πŸ“–mathematicalβ€”SMulCommClass
DomMulAct
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
instSMulMonoidHom
β€”Function.Injective.smulCommClass
instSMulCommClassForall_2
DFunLike.coe_injective
mk_inv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomMulAct
EquivLike.toFunLike
Equiv.instEquivLike
instInvOfMulOpposite
MulOpposite.instInv
β€”β€”
mk_mul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomMulAct
EquivLike.toFunLike
Equiv.instEquivLike
instMulOfMulOpposite
MulOpposite.instMul
β€”β€”
mk_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomMulAct
EquivLike.toFunLike
Equiv.instEquivLike
instOneOfMulOpposite
MulOpposite.instOne
β€”β€”
mk_pow πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomMulAct
EquivLike.toFunLike
Equiv.instEquivLike
Monoid.toNatPow
instMonoidOfMulOpposite
MulOpposite.instMonoid
β€”β€”
mk_smul_addMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
DomMulAct
instSMulAddMonoidHom
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
β€”β€”
mk_smul_monoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
DomMulAct
instSMulMonoidHom
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulDistribMulAction.toMulAction
β€”β€”
mk_zpow πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomMulAct
EquivLike.toFunLike
Equiv.instEquivLike
DivInvMonoid.toZPow
instDivInvMonoidOfMulOpposite
MulOpposite.instDivInvMonoid
β€”β€”
smul_addMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
DomMulAct
instSMulAddMonoidHom
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”β€”
smul_apply πŸ“–mathematicalβ€”DomMulAct
instSMulForall
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”β€”
smul_monoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
DomMulAct
instSMulMonoidHom
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulDistribMulAction.toMulAction
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”β€”
symm_mk_inv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomMulAct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
instInvOfMulOpposite
MulOpposite.instInv
β€”β€”
symm_mk_mul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomMulAct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
instMulOfMulOpposite
MulOpposite.instMul
β€”β€”
symm_mk_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomMulAct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
instOneOfMulOpposite
MulOpposite.instOne
β€”β€”
symm_mk_pow πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomMulAct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Monoid.toNatPow
instMonoidOfMulOpposite
MulOpposite.instMonoid
β€”β€”
symm_mk_zpow πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DomMulAct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
DivInvMonoid.toZPow
instDivInvMonoidOfMulOpposite
MulOpposite.instDivInvMonoid
β€”β€”

(root)

Definitions

NameCategoryTheorems
DomAddAct πŸ“–CompOp
76 mathmath: DomAddAct.instSecondCountableTopology, DomAddAct.mk_vadd_indicatorConstLp, DomAddAct.instT3Space, DomAddAct.instIsLeftCancelAddOfAddOpposite, DomAddAct.instVAddCommClassAEEqFun_2, DomAddAct.map_mk_symm_nhds, DomAddAct.instVAddCommClassForall_1, DomAddAct.isOpenEmbedding_mk, DomAddAct.instT4Space, DomAddAct.isOpenEmbedding_mk_symm, DomAddAct.instIsIsometricVAddSubtypeAEEqFunMemAddAddSubgroupLp, DomAddAct.vadd_Lp_add, DomAddAct.isInducing_mk, DomAddAct.continuous_mk_symm, DomAddAct.instCompactSpace, DomAddAct.symm_mk_neg, DomAddAct.symm_mk_add, DomAddAct.mk_zsmul, DomAddAct.instCompletelyNormalSpace, DomAddAct.instVAddCommClassForall_2, DomAddAct.comap_mk.symm_nhds, DomAddAct.instIsCancelAddOfAddOpposite, DomAddAct.symm_mk_zsmul, DomAddAct.norm_vadd_Lp, DomAddAct.instLocallyCompactSpace, DomAddAct.mk_add, DomAddAct.vadd_aeeqFun_const, DomAddAct.instVAddCommClassForall, DomAddAct.vadd_aeeqFun_aeeq, DomAddAct.vadd_Lp_ae_eq, DomAddAct.vadd_Lp_sub, MeasureTheory.Lp.instContinuousVAddDomAddAct, translate_eq_domAddActMk_vadd, DomAddAct.instDiscreteTopology, DomAddAct.instT0Space, DomAddAct.vadd_Lp_neg, DomAddAct.continuous_mk, DomAddAct.instR0Space, DomAddAct.isQuotientMap_mk_symm, DomAddAct.edist_vadd_Lp, DomAddAct.instR1Space, DomAddAct.mk_nsmul, DomAddAct.instFaithfulVAddForallOfNontrivial, DomAddAct.mk_vadd_toLp, DomAddAct.instT5Space, DomAddAct.vadd_Lp_const, DomAddAct.isEmbedding_mk, DomAddAct.instRegularSpace, DomAddAct.coe_mkHomeomorph_symm, DomAddAct.toEquiv_mkHomeomorph, DomAddAct.mk_neg, DomAddAct.map_mk_nhds, DomAddAct.instT1Space, DomAddAct.coe_mkHomeomorph, DomAddAct.mk_vadd_mk_aeeqFun, DomAddAct.symm_mk_nsmul, DomAddAct.mk_zero, DomAddAct.instT25Space, DomAddAct.instIsRightCancelAddOfAddOpposite, DomAddAct.instSeparableSpace, DomAddAct.vadd_apply, DomAddAct.isClosedEmbedding_mk, DomAddAct.instFirstCountableTopology, DomAddAct.dist_vadd_Lp, DomAddAct.vadd_Lp_zero, DomAddAct.isEmbedding_mk_symm, DomAddAct.isClosedEmbedding_mk_symm, DomAddAct.nnnorm_vadd_Lp, DomAddAct.isQuotientMap_mk, DomAddAct.comap_mk_nhds, DomAddAct.symm_mk_zero, DomAddAct.instNormalSpace, DomAddAct.vadd_Lp_val, DomAddAct.instWeaklyLocallyCompactSpace, DomAddAct.isInducing_mk_symm, DomAddAct.instT2Space
Β«term_α΅ˆα΅ƒα΅ƒΒ» πŸ“–CompOpβ€”
Β«term_α΅ˆα΅α΅ƒΒ» πŸ“–CompOpβ€”

---

← Back to Index