| Name | Category | Theorems |
instAddActionForall π | CompOp | β |
instAddCancelCommMonoidOfAddOpposite π | CompOp | β |
instAddCancelMonoidOfAddOpposite π | CompOp | β |
instAddCommGroupOfAddOpposite π | CompOp | β |
instAddCommMonoidOfAddOpposite π | CompOp | β |
instAddCommSemigroupOfAddOpposite π | CompOp | β |
instAddGroupOfAddOpposite π | CompOp | β |
instAddLeftCancelMonoidOfAddOpposite π | CompOp | β |
instAddLeftCancelSemigroupOfAddOpposite π | CompOp | β |
instAddMonoidOfAddOpposite π | CompOp | 2 mathmath: mk_nsmul, symm_mk_nsmul
|
instAddOfAddOpposite π | CompOp | 5 mathmath: instIsLeftCancelAddOfAddOpposite, symm_mk_add, instIsCancelAddOfAddOpposite, mk_add, instIsRightCancelAddOfAddOpposite
|
instAddRightCancelMonoidOfAddOpposite π | CompOp | β |
instAddRightCancelSemigroupOfAddOpposite π | CompOp | β |
instAddSemigroupOfAddOpposite π | CompOp | β |
instAddZeroClassOfAddOpposite π | CompOp | β |
instCommRingOfAddOpposite π | CompOp | β |
instDivisionAddCommMonoidOfAddOpposite π | CompOp | β |
instInvolutiveNegOfAddOpposite π | CompOp | β |
instNegOfAddOpposite π | CompOp | 2 mathmath: symm_mk_neg, mk_neg
|
instNegZeroClassOfAddOpposite π | CompOp | β |
instNonAssocSemiringOfAddOpposite π | CompOp | β |
instNonUnitalSemiringOfAddOpposite π | CompOp | β |
instRingOfAddOpposite π | CompOp | β |
instSemiringOfAddOpposite π | CompOp | β |
instSubNegAddMonoidOfAddOpposite π | CompOp | 2 mathmath: mk_zsmul, symm_mk_zsmul
|
instSubNegZeroMonoidOfAddOpposite π | CompOp | β |
instSubtractionMonoidOfAddOpposite π | CompOp | β |
instVAddForall π | CompOp | 6 mathmath: instVAddCommClassForall_1, instVAddCommClassForall_2, instVAddCommClassForall, translate_eq_domAddActMk_vadd, instFaithfulVAddForallOfNontrivial, vadd_apply
|
instZeroOfAddOpposite π | CompOp | 2 mathmath: mk_zero, symm_mk_zero
|
mk π | CompOp | β |
| Name | Category | Theorems |
instCancelCommMonoidOfMulOpposite π | CompOp | β |
instCancelMonoidOfMulOpposite π | CompOp | β |
instCommGroupOfMulOpposite π | CompOp | β |
instCommMonoidOfMulOpposite π | CompOp | β |
instCommRingOfMulOpposite π | CompOp | β |
instCommSemigroupOfMulOpposite π | CompOp | β |
instDistribMulActionAddMonoidHom π | CompOp | β |
instDistribMulActionForallOfMulAction π | CompOp | β |
instDistribSMulForallOfSMul π | CompOp | β |
instDivInvMonoidOfMulOpposite π | CompOp | 2 mathmath: mk_zpow, symm_mk_zpow
|
instDivInvOneMonoidOfMulOpposite π | CompOp | β |
instDivisionCommMonoidOfMulOpposite π | CompOp | β |
instDivisionMonoidOfMulOpposite π | CompOp | β |
instGroupOfMulOpposite π | CompOp | 2 mathmath: mem_stabilizer_iff, stabilizerMulEquiv_apply
|
instInvOfMulOpposite π | CompOp | 3 mathmath: MeasureTheory.addHaarScalarFactor_smul_inv_eq_distribHaarChar, mk_inv, symm_mk_inv
|
instInvOneClassOfMulOpposite π | CompOp | β |
instInvolutiveInvOfMulOpposite π | CompOp | β |
instLeftCancelMonoidOfMulOpposite π | CompOp | β |
instLeftCancelSemigroupOfMulOpposite π | CompOp | β |
instMonoidOfMulOpposite π | CompOp | 15 mathmath: MeasureTheory.integral_domSMul, MeasureTheory.addHaarScalarFactor_smul_inv_eq_distribHaarChar, symm_mk_pow, MeasureTheory.Measure.domSMul_apply, MeasureTheory.addHaarScalarFactor_smul_eq_distribHaarChar_inv, MeasureTheory.Measure.IsAddHaarMeasure.domSMul, MeasureTheory.addHaarScalarFactor_smul_eq_distribHaarChar, MeasureTheory.Measure.addHaarScalarFactor_smul_congr, MeasureTheory.distribHaarChar_apply, MeasureTheory.Measure.Regular.domSMul, MeasureTheory.Measure.instSMulCommClassDomMulActNNReal, MeasureTheory.Measure.instSMulCommClassNNRealDomMulAct, mk_pow, MeasureTheory.Measure.addHaarScalarFactor_domSMul, MeasureTheory.Measure.addHaarScalarFactor_smul_congr'
|
instMulActionAddMonoidHomOfDistribMulAction π | CompOp | β |
instMulActionForall π | CompOp | 2 mathmath: mem_stabilizer_iff, stabilizerMulEquiv_apply
|
instMulActionMonoidHom π | CompOp | β |
instMulDistribMulActionForallOfMulAction π | CompOp | β |
instMulDistribMulActionMonoidHom π | CompOp | β |
instMulOfMulOpposite π | CompOp | 5 mathmath: instIsCancelMulOfMulOpposite, instIsLeftCancelMulOfMulOpposite, mk_mul, instIsRightCancelMulOfMulOpposite, symm_mk_mul
|
instMulOneClassOfMulOpposite π | CompOp | β |
instNonAssocSemiringOfMulOpposite π | CompOp | 2 mathmath: LinearEquiv.domMulActCongrRight_symm_apply, LinearEquiv.domMulActCongrRight_apply
|
instNonUnitalSemiringOfMulOpposite π | CompOp | β |
instOneOfMulOpposite π | CompOp | 2 mathmath: symm_mk_one, mk_one
|
instRightCancelMonoidOfMulOpposite π | CompOp | β |
instRightCancelSemigroupOfMulOpposite π | CompOp | β |
instRingOfMulOpposite π | CompOp | β |
instSMulAddMonoidHom π | CompOp | 5 mathmath: smul_addMonoidHom_apply, coe_smul_addMonoidHom, instSMulCommClassAddMonoidHom, instSMulCommClassAddMonoidHom_1, mk_smul_addMonoidHom_apply
|
instSMulForall π | CompOp | 7 mathmath: instFaithfulSMulForallOfNontrivial, coe_smul_addMonoidHom, instSMulCommClassForall_1, coe_smul_linearMap, instSMulCommClassForall_2, instSMulCommClassForall, smul_apply
|
instSMulMonoidHom π | CompOp | 3 mathmath: smul_monoidHom_apply, instSMulCommClassMonoidHom, mk_smul_monoidHom_apply
|
instSMulZeroClassForallOfSMul π | CompOp | β |
instSemigroupOfMulOpposite π | CompOp | β |
instSemiringOfMulOpposite π | CompOp | 2 mathmath: LinearEquiv.domMulActCongrRight_symm_apply, LinearEquiv.domMulActCongrRight_apply
|
mk π | CompOp | β |