Theoremsof_embedding, of_embedding_congr, isMultiplyPretransitive_iff, isMultiplyPretransitive_of_le, isMultiplyPretransitive_of_le', isPreprimitive_of_is_two_pretransitive, isPretransitive_of_is_two_pretransitive, is_two_pretransitive_iff, is_zero_pretransitive, is_zero_pretransitive', is_zero_pretransitive_iff, zeroEmbedding_isPretransitive_iff, zeroEmbeddingMap_bijective, isMultiplyPretransitive, isPreprimitive_of_three_le_card, isPretransitive_of_three_le_card, isTrivialBlock_of_isBlock, eq_top_if_isMultiplyPretransitive, eq_top_of_isMultiplyPretransitive, instIsPreprimitive, isMultiplyPretransitive, addActionHom_embedding_isBijective, mulActionHom_embedding_isBijective, addActionHom_embedding_apply, addActionHom_embedding_isInjective, mulActionHom_embedding_apply, mulActionHom_embedding_isInjective, alternatingGroup_le, index_of_fixingSubgroup_eq, index_of_fixingSubgroup_mul, of_embedding, of_embedding_congr, isMultiplyPretransitive_iff, isMultiplyPretransitive_of_le, isMultiplyPretransitive_of_le', isPreprimitive_of_is_two_pretransitive, isPretransitive_of_is_two_pretransitive, is_one_pretransitive_iff, is_two_pretransitive_iff, is_zero_pretransitive, is_zero_pretransitive', oneEmbedding_isPretransitive_iff, oneEmbeddingMap_bijective, isMultiplyPretransitive, isMultiplyPretransitive', isMultiplyPretransitive, isMultiplyPretransitive_iff, isMultiplyPretransitive_iff_of_conj, isPretransitive_iff, isPretransitive_iff_of_conj, isMultiplyPretransitive, isMultiplyPretransitive', isMultiplyPretransitive, isMultiplyPretransitive_iff, isMultiplyPretransitive_iff_of_conj, isPretransitive_iff, isPretransitive_iff_of_conj, isMultiplyPretransitive, isPreprimitive_of_three_le_card, isPretransitive_of_three_le_card, isTrivialBlock_of_isBlock | 61 |