Documentation Verification Report

MultipleTransitivity

📁 Source: Mathlib/GroupTheory/GroupAction/MultipleTransitivity.lean

Statistics

MetricCount
DefinitionsIsMultiplyPretransitive, embMap, zeroEmbeddingMap, addActionHom_embedding, mulActionHom_embedding, IsMultiplyPretransitive, embMap, oneEmbeddingMap
8
Theoremsof_embedding, of_embedding_congr, isMultiplyPretransitive_iff, isMultiplyPretransitive_of_le, isMultiplyPretransitive_of_le', isPreprimitive_of_is_two_pretransitive, isPretransitive_of_is_two_pretransitive, is_two_pretransitive_iff, is_zero_pretransitive, is_zero_pretransitive', is_zero_pretransitive_iff, zeroEmbedding_isPretransitive_iff, zeroEmbeddingMap_bijective, isMultiplyPretransitive, isPreprimitive_of_three_le_card, isPretransitive_of_three_le_card, isTrivialBlock_of_isBlock, eq_top_if_isMultiplyPretransitive, eq_top_of_isMultiplyPretransitive, instIsPreprimitive, isMultiplyPretransitive, addActionHom_embedding_isBijective, mulActionHom_embedding_isBijective, addActionHom_embedding_apply, addActionHom_embedding_isInjective, mulActionHom_embedding_apply, mulActionHom_embedding_isInjective, alternatingGroup_le, index_of_fixingSubgroup_eq, index_of_fixingSubgroup_mul, of_embedding, of_embedding_congr, isMultiplyPretransitive_iff, isMultiplyPretransitive_of_le, isMultiplyPretransitive_of_le', isPreprimitive_of_is_two_pretransitive, isPretransitive_of_is_two_pretransitive, is_one_pretransitive_iff, is_two_pretransitive_iff, is_zero_pretransitive, is_zero_pretransitive', oneEmbedding_isPretransitive_iff, oneEmbeddingMap_bijective, isMultiplyPretransitive, isMultiplyPretransitive', isMultiplyPretransitive, isMultiplyPretransitive_iff, isMultiplyPretransitive_iff_of_conj, isPretransitive_iff, isPretransitive_iff_of_conj, isMultiplyPretransitive, isMultiplyPretransitive', isMultiplyPretransitive, isMultiplyPretransitive_iff, isMultiplyPretransitive_iff_of_conj, isPretransitive_iff, isPretransitive_iff_of_conj, isMultiplyPretransitive, isPreprimitive_of_three_le_card, isPretransitive_of_three_le_card, isTrivialBlock_of_isBlock
61
Total69

AddAction

Definitions

NameCategoryTheorems
IsMultiplyPretransitive 📖MathDef
14 mathmath: is_zero_pretransitive', SubAddAction.ofStabilizer.isMultiplyPretransitive_iff_of_conj, isMultiplyPretransitive_of_le, SubAddAction.ofFixingAddSubgroup.isMultiplyPretransitive, SubAddAction.ofFixingAddSubgroup.isMultiplyPretransitive', IsMultiplyPreprimitive.isMultiplyPretransitive, isMultiplyPretransitive_of_le', instIsMultiplyPretransitiveOfIsMultiplyPreprimitive, SubAddAction.ofStabilizer.isMultiplyPretransitive_iff, is_two_pretransitive_iff, isMultiplyPreprimitive_iff, isMultiplyPretransitive_iff, SubAddAction.ofStabilizer.isMultiplyPretransitive, is_zero_pretransitive_iff

Theorems

NameKindAssumesProvesValidatesDepends On
isMultiplyPretransitive_iff 📖mathematicalIsMultiplyPretransitive
HVAdd.hVAdd
Function.Embedding
instHVAdd
Function.Embedding.vadd
isPretransitive_iff
isMultiplyPretransitive_of_le 📖mathematicalNat.cardIsMultiplyPretransitiveIsPretransitive.of_surjective_map
Fin.Embedding.restrictSurjective_of_add_le_natCard
isMultiplyPretransitive_of_le' 📖mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
ENat.card
IsMultiplyPretransitiveIsPretransitive.of_surjective_map
Fin.Embedding.restrictSurjective_of_add_le_ENatCard
isPreprimitive_of_is_two_pretransitive 📖mathematicalIsPreprimitive
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
isPretransitive_of_is_two_pretransitive
Set.subsingleton_or_nontrivial
Set.top_eq_univ
eq_top_iff
is_two_pretransitive_iff
isBlock_iff_vadd_eq_of_mem
Set.vadd_mem_vadd_set
isPretransitive_of_is_two_pretransitive 📖mathematicalIsPretransitive
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
zero_vadd
is_two_pretransitive_iff
is_two_pretransitive_iff 📖mathematicalIsMultiplyPretransitive
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
exists_vadd_eq
Function.Embedding.embFinTwo_apply_zero
Function.Embedding.vadd_apply
Function.Embedding.embFinTwo_apply_one
Function.Embedding.injective
Function.Embedding.ext
Fin.eq_one_of_ne_zero
is_zero_pretransitive 📖mathematicalIsPretransitive
Function.Embedding
Function.Embedding.vadd
instIsPretransitiveOfSubsingleton
Unique.instSubsingleton
is_zero_pretransitive' 📖mathematicalIsMultiplyPretransitiveinstIsPretransitiveOfSubsingleton
Unique.instSubsingleton
Fin.isEmpty'
is_zero_pretransitive_iff 📖mathematicalIsMultiplyPretransitive
IsPretransitive
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
zeroEmbedding_isPretransitive_iff
zeroEmbedding_isPretransitive_iff 📖mathematicalIsPretransitive
Function.Embedding
Function.Embedding.vadd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
isPretransitive_congr
AddActionHom.zeroEmbeddingMap_bijective

AddAction.IsPretransitive

Theorems

NameKindAssumesProvesValidatesDepends On
of_embedding 📖mathematicalDFunLike.coe
AddActionHom
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instFunLikeAddActionHom
AddAction.IsPretransitive
Function.Embedding
Function.Embedding.vadd
Function.surjInv_eq
exists_vadd_eq
Function.Embedding.ext
Function.Embedding.vadd_apply
DFunLike.ext_iff
AddActionHom.map_vadd'
of_embedding_congr 📖mathematicalFunction.Bijective
DFunLike.coe
AddActionHom
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instFunLikeAddActionHom
AddAction.IsPretransitive
Function.Embedding
Function.Embedding.vadd
AddAction.isPretransitive_congr
Function.Bijective.injective
Function.Bijective.addActionHom_embedding_isBijective

AddActionHom

Definitions

NameCategoryTheorems
embMap 📖CompOp
zeroEmbeddingMap 📖CompOp
1 mathmath: zeroEmbeddingMap_bijective

Theorems

NameKindAssumesProvesValidatesDepends On
zeroEmbeddingMap_bijective 📖mathematicalFunction.Bijective
Function.Embedding
DFunLike.coe
AddActionHom
Function.Embedding.vadd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instFunLikeAddActionHom
zeroEmbeddingMap
Equiv.bijective

AlternatingGroup

Theorems

NameKindAssumesProvesValidatesDepends On
isMultiplyPretransitive 📖mathematicalMulAction.IsMultiplyPretransitive
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
Subgroup.instMulAction
Equiv.Perm.applyMulAction
Nat.card
alternatingGroup.isMultiplyPretransitive
isPreprimitive_of_three_le_card 📖mathematicalNat.cardMulAction.IsPreprimitive
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
Equiv.Perm.applyMulAction
alternatingGroup.isPreprimitive_of_three_le_card
isPretransitive_of_three_le_card 📖mathematicalNat.cardMulAction.IsPretransitive
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
Equiv.Perm.applyMulAction
alternatingGroup.isPretransitive_of_three_le_card
isTrivialBlock_of_isBlock 📖mathematicalMulAction.IsBlock
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
Equiv.Perm.applyMulAction
MulAction.IsTrivialBlockalternatingGroup.isTrivialBlock_of_isBlock

Equiv.Perm

Theorems

NameKindAssumesProvesValidatesDepends On
eq_top_if_isMultiplyPretransitive 📖mathematicalTop.top
Subgroup
Equiv.Perm
permGroup
Subgroup.instTop
eq_top_of_isMultiplyPretransitive
eq_top_of_isMultiplyPretransitive 📖mathematicalTop.top
Subgroup
Equiv.Perm
permGroup
Subgroup.instTop
eq_top_iff
MulAction.exists_smul_eq
Nat.card_eq_fintype_card
Function.Bijective.surjective
Fintype.bijective_iff_injective_and_card
EmbeddingLike.injective
Function.instEmbeddingLikeEmbedding
Fintype.card_fin
Function.Embedding.ext_iff
lt_or_eq_of_le
Fin.prop
lt_irrefl
ext
SetLike.coe_mem
instIsPreprimitive 📖mathematicalMulAction.IsPreprimitive
Equiv.Perm
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MulAction.toSemigroupAction
applyMulAction
MulAction.isPreprimitive_of_is_two_pretransitive
isMultiplyPretransitive
isMultiplyPretransitive 📖mathematicalMulAction.IsMultiplyPretransitive
Equiv.Perm
permGroup
applyMulAction
MulAction.isMultiplyPretransitive_iff
Cardinal.mk_fintype
Fintype.card_ofFinset
Finset.card_image_of_injective
Function.instEmbeddingLikeEmbedding
Fintype.card_plift
Fintype.card_fin
add_comm
Cardinal.mk_sum_compl
Cardinal.eq
Function.Injective.extend_apply
Function.Embedding.injective
Set.mem_compl_iff
Subtype.val_injective
Function.extend_apply'
Subtype.coe_prop
Set.mem_range_self
Equiv.injective
Equiv.apply_symm_apply
Function.Embedding.ext

Function.Bijective

Theorems

NameKindAssumesProvesValidatesDepends On
addActionHom_embedding_isBijective 📖mathematicalFunction.Bijective
DFunLike.coe
AddActionHom
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instFunLikeAddActionHom
Function.Embedding
Function.Embedding.vadd
Function.Injective.addActionHom_embedding
injective
injective
Function.Injective.addActionHom_embedding_isInjective
Function.bijective_iff_has_inverse
Function.RightInverse.injective
EmbeddingLike.injective
Function.instEmbeddingLikeEmbedding
Function.Embedding.ext
Function.Injective.addActionHom_embedding_apply
mulActionHom_embedding_isBijective 📖mathematicalFunction.Bijective
DFunLike.coe
MulActionHom
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instFunLikeMulActionHom
Function.Embedding
Function.Embedding.smul
Function.Injective.mulActionHom_embedding
injective
injective
Function.Injective.mulActionHom_embedding_isInjective
Function.bijective_iff_has_inverse
Function.RightInverse.injective
EmbeddingLike.injective
Function.instEmbeddingLikeEmbedding
Function.Embedding.ext
Function.Injective.mulActionHom_embedding_apply

Function.Injective

Definitions

NameCategoryTheorems
addActionHom_embedding 📖CompOp
3 mathmath: Function.Bijective.addActionHom_embedding_isBijective, addActionHom_embedding_isInjective, addActionHom_embedding_apply
mulActionHom_embedding 📖CompOp
3 mathmath: mulActionHom_embedding_apply, mulActionHom_embedding_isInjective, Function.Bijective.mulActionHom_embedding_isBijective

Theorems

NameKindAssumesProvesValidatesDepends On
addActionHom_embedding_apply 📖mathematicalDFunLike.coe
AddActionHom
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instFunLikeAddActionHom
Function.Embedding
Function.instFunLikeEmbedding
Function.Embedding.vadd
addActionHom_embedding
addActionHom_embedding_isInjective 📖mathematicalDFunLike.coe
AddActionHom
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instFunLikeAddActionHom
Function.Embedding
Function.Embedding.vadd
addActionHom_embedding
Function.Embedding.ext
addActionHom_embedding_apply
mulActionHom_embedding_apply 📖mathematicalDFunLike.coe
MulActionHom
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instFunLikeMulActionHom
Function.Embedding
Function.instFunLikeEmbedding
Function.Embedding.smul
mulActionHom_embedding
mulActionHom_embedding_isInjective 📖mathematicalDFunLike.coe
MulActionHom
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instFunLikeMulActionHom
Function.Embedding
Function.Embedding.smul
mulActionHom_embedding
Function.Embedding.ext
mulActionHom_embedding_apply

IsMultiplyPretransitive

Theorems

NameKindAssumesProvesValidatesDepends On
alternatingGroup_le 📖mathematicalSubgroup
Equiv.Perm
Equiv.Perm.permGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
alternatingGroup
alternatingGroup.eq_bot_of_card_le_two
LT.lt.le
Nat.card_eq_fintype_card
bot_le
Equiv.Perm.alternatingGroup_le_of_index_le_two
Set.exists_subset_card_eq
Set.ncard_univ
MulAction.IsMultiplyPretransitive.index_of_fixingSubgroup_mul
Finite.of_fintype
mul_le_mul_iff_of_pos_left
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.card_pos
One.instNonempty
Subgroup.instFiniteSubtypeMem
Equiv.finite_left
Subgroup.card_mul_index
Subgroup.index_mul_card
mul_assoc
mul_comm
Nat.factorial_two
Nat.card_perm

MulAction

Definitions

NameCategoryTheorems
IsMultiplyPretransitive 📖MathDef
20 mathmath: IsPreprimitive.is_two_pretransitive, SubMulAction.ofStabilizer.isMultiplyPretransitive_iff, Equiv.Perm.isMultiplyPretransitive_of_nontrivial, IsMultiplyPreprimitive.isMultiplyPretransitive, SubMulAction.ofStabilizer.isMultiplyPretransitive_iff_of_conj, SubMulAction.ofFixingSubgroup.isMultiplyPretransitive, isMultiplyPreprimitive_iff, AlternatingGroup.isMultiplyPretransitive, instIsMultiplyPretransitiveOfIsMultiplyPreprimitive, is_two_pretransitive_iff, SubMulAction.ofStabilizer.isMultiplyPretransitive, IsPreprimitive.is_two_motive_of_is_motive, isMultiplyPretransitive_iff, alternatingGroup.isMultiplyPretransitive, SubMulAction.ofFixingSubgroup.isMultiplyPretransitive', is_zero_pretransitive', isMultiplyPretransitive_of_le', is_one_pretransitive_iff, isMultiplyPretransitive_of_le, Equiv.Perm.isMultiplyPretransitive

Theorems

NameKindAssumesProvesValidatesDepends On
isMultiplyPretransitive_iff 📖mathematicalIsMultiplyPretransitive
Function.Embedding
Function.Embedding.smul
isPretransitive_iff
isMultiplyPretransitive_of_le 📖mathematicalNat.cardIsMultiplyPretransitiveIsPretransitive.of_surjective_map
Fin.Embedding.restrictSurjective_of_add_le_natCard
isMultiplyPretransitive_of_le' 📖mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
ENat.card
IsMultiplyPretransitiveIsPretransitive.of_surjective_map
Fin.Embedding.restrictSurjective_of_add_le_ENatCard
isPreprimitive_of_is_two_pretransitive 📖mathematicalIsPreprimitive
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
isPretransitive_of_is_two_pretransitive
Set.subsingleton_or_nontrivial
Set.top_eq_univ
eq_top_iff
is_two_pretransitive_iff
isBlock_iff_smul_eq_of_mem
Set.smul_mem_smul_set
isPretransitive_of_is_two_pretransitive 📖mathematicalIsPretransitive
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
one_smul
is_two_pretransitive_iff
is_one_pretransitive_iff 📖mathematicalIsMultiplyPretransitive
IsPretransitive
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
oneEmbedding_isPretransitive_iff
is_two_pretransitive_iff 📖mathematicalIsMultiplyPretransitive
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
exists_smul_eq
Function.Embedding.embFinTwo_apply_zero
Function.Embedding.smul_apply
Function.Embedding.embFinTwo_apply_one
Function.Embedding.injective
Function.Embedding.ext
Fin.eq_one_of_ne_zero
is_zero_pretransitive 📖mathematicalIsPretransitive
Function.Embedding
Function.Embedding.smul
instIsPretransitiveOfSubsingleton
Unique.instSubsingleton
is_zero_pretransitive' 📖mathematicalIsMultiplyPretransitiveinstIsPretransitiveOfSubsingleton
Unique.instSubsingleton
Fin.isEmpty'
oneEmbedding_isPretransitive_iff 📖mathematicalIsPretransitive
Function.Embedding
Function.Embedding.smul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
isPretransitive_congr
MulActionHom.oneEmbeddingMap_bijective

MulAction.IsMultiplyPretransitive

Theorems

NameKindAssumesProvesValidatesDepends On
index_of_fixingSubgroup_eq 📖mathematicalSubgroup.index
fixingSubgroup
Nat.choose
Nat.card
Set.ncard
Nat.factorial
Nat.factorial_pos
index_of_fixingSubgroup_mul
Nat.choose_mul_factorial_mul_factorial
Set.ncard_univ
Set.ncard_le_ncard
Set.subset_univ
Set.toFinite
Subtype.finite
index_of_fixingSubgroup_mul 📖mathematicalSet.ncardSubgroup.index
fixingSubgroup
Nat.factorial
Nat.card
Set.ncard_eq_zero
Set.toFinite
Subtype.finite
fixingSubgroup_empty
Subgroup.index_top
tsub_zero
Nat.instOrderedSub
one_mul
MulAction.is_one_pretransitive_iff
MulAction.isMultiplyPretransitive_of_le
Set.ncard_univ
Set.ncard_le_ncard
Set.subset_univ
Set.finite_univ
Set.ncard_pos
Set.image_preimage_eq_inter_range
Subtype.range_coe_subtype
Set.diff_eq_compl_inter
Set.inter_comm
Set.insert_diff_singleton
Set.insert_eq_of_mem
SubMulAction.fixingSubgroup_of_insert
Subgroup.index_map
MonoidHom.ker_eq_bot_iff
sup_bot_eq
Subgroup.range_subtype
Set.ncard_image_of_injective
Subtype.coe_injective
Set.ncard_insert_of_notMem
Finite.Set.finite_image
SubMulAction.nat_card_ofStabilizer_eq
SubMulAction.ofStabilizer.isMultiplyPretransitive
add_comm
mul_comm
MulAction.index_stabilizer_of_transitive
Nat.mul_factorial_pred
Nat.card_ne_zero

MulAction.IsPretransitive

Theorems

NameKindAssumesProvesValidatesDepends On
of_embedding 📖mathematicalDFunLike.coe
MulActionHom
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instFunLikeMulActionHom
MulAction.IsPretransitive
Function.Embedding
Function.Embedding.smul
Function.surjInv_eq
exists_smul_eq
Function.Embedding.ext
Function.Embedding.smul_apply
DFunLike.ext_iff
MulActionHom.map_smul'
of_embedding_congr 📖mathematicalFunction.Bijective
DFunLike.coe
MulActionHom
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instFunLikeMulActionHom
MulAction.IsPretransitive
Function.Embedding
Function.Embedding.smul
MulAction.isPretransitive_congr
Function.Bijective.injective
Function.Bijective.mulActionHom_embedding_isBijective

MulActionHom

Definitions

NameCategoryTheorems
embMap 📖CompOp
oneEmbeddingMap 📖CompOp
1 mathmath: oneEmbeddingMap_bijective

Theorems

NameKindAssumesProvesValidatesDepends On
oneEmbeddingMap_bijective 📖mathematicalFunction.Bijective
Function.Embedding
DFunLike.coe
MulActionHom
Function.Embedding.smul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instFunLikeMulActionHom
oneEmbeddingMap
Equiv.bijective

SubAddAction.ofFixingAddSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
isMultiplyPretransitive 📖mathematicalSet.ncardAddAction.IsMultiplyPretransitive
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
fixingAddSubgroup
SubAddAction
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup.toAddGroup
AddAction.toAddSemigroupAction
AddSubgroup.instAddAction
SubAddAction.instSetLike
SubAddAction.ofFixingAddSubgroup
SubAddAction.addAction
Finite.card_eq
Finite.of_fintype
Nat.card_eq_fintype_card
Fintype.card_fin
AddAction.exists_vadd_eq
Equiv.apply_symm_apply
append_left
Function.Embedding.vadd_apply
Function.Embedding.ext
SubAddAction.instVAddMemClass
SetLike.val_vadd
AddSubgroup.mk_vadd
append_right
isMultiplyPretransitive' 📖mathematicalSet.ncard
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
ENat.card
AddAction.IsMultiplyPretransitive
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
fixingAddSubgroup
SubAddAction
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup.toAddGroup
AddAction.toAddSemigroupAction
AddSubgroup.instAddAction
SubAddAction.instSetLike
SubAddAction.ofFixingAddSubgroup
SubAddAction.addAction
isMultiplyPretransitive
AddAction.isMultiplyPretransitive_of_le'

SubAddAction.ofStabilizer

Theorems

NameKindAssumesProvesValidatesDepends On
isMultiplyPretransitive 📖mathematicalAddAction.IsMultiplyPretransitive
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddAction.stabilizer
SubAddAction
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup.toAddGroup
AddAction.toAddSemigroupAction
AddSubgroup.instAddAction
SubAddAction.instSetLike
SubAddAction.ofStabilizer
SubAddAction.addAction
AddAction.exists_vadd_eq
AddAction.mem_stabilizer_iff
snoc_last
DFunLike.ext_iff
Function.Embedding.ext
snoc_castSucc
Function.Embedding.vadd_apply
SubAddAction.exists_vadd_of_last_eq
AddAction.IsPretransitive.exists_vadd_eq
AddSemigroupAction.add_vadd
neg_vadd_eq_iff
Fin.eq_castSucc_or_eq_last
Subtype.prop
isMultiplyPretransitive_iff 📖mathematicalAddAction.IsMultiplyPretransitive
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddAction.stabilizer
SubAddAction
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup.toAddGroup
AddAction.toAddSemigroupAction
AddSubgroup.instAddAction
SubAddAction.instSetLike
SubAddAction.ofStabilizer
SubAddAction.addAction
AddAction.exists_vadd_eq
isMultiplyPretransitive_iff_of_conj
isMultiplyPretransitive_iff_of_conj 📖mathematicalHVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddAction.IsMultiplyPretransitive
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddAction.stabilizer
SubAddAction
AddSubgroup.toAddGroup
AddSubgroup.instAddAction
SubAddAction.instSetLike
SubAddAction.ofStabilizer
SubAddAction.addAction
AddAction.IsPretransitive.of_embedding_congr
AddEquiv.surjective
conjMap_bijective
isPretransitive_iff 📖mathematicalAddAction.IsPretransitive
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddAction.stabilizer
SubAddAction
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup.toAddGroup
AddAction.toAddSemigroupAction
AddSubgroup.instAddAction
SubAddAction.instSetLike
SubAddAction.ofStabilizer
SubAddAction.vadd'
AddMonoid.toAddAction
VAddAssocClass.left
VAddAssocClass.left
AddAction.exists_vadd_eq
isPretransitive_iff_of_conj
isPretransitive_iff_of_conj 📖mathematicalHVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddAction.IsPretransitive
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddAction.stabilizer
SubAddAction
AddSubgroup.toAddGroup
AddSubgroup.instAddAction
SubAddAction.instSetLike
SubAddAction.ofStabilizer
SubAddAction.vadd'
AddMonoid.toAddAction
VAddAssocClass.left
AddAction.isPretransitive_congr
AddEquiv.surjective
conjMap_bijective

SubMulAction.ofFixingSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
isMultiplyPretransitive 📖mathematicalSet.ncardMulAction.IsMultiplyPretransitive
Subgroup
SetLike.instMembership
Subgroup.instSetLike
fixingSubgroup
SubMulAction
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
SubMulAction.instSetLike
SubMulAction.ofFixingSubgroup
SubMulAction.mulAction
Finite.card_eq
Finite.of_fintype
Nat.card_eq_fintype_card
Fintype.card_fin
MulAction.exists_smul_eq
Equiv.apply_symm_apply
append_left
Function.Embedding.smul_apply
Function.Embedding.ext
SubMulAction.instSMulMemClass
SetLike.val_smul
Subgroup.mk_smul
isMultiplyPretransitive' 📖mathematicalSet.ncard
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
ENat.card
MulAction.IsMultiplyPretransitive
Subgroup
SetLike.instMembership
Subgroup.instSetLike
fixingSubgroup
SubMulAction
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
SubMulAction.instSetLike
SubMulAction.ofFixingSubgroup
SubMulAction.mulAction
isMultiplyPretransitive
MulAction.isMultiplyPretransitive_of_le'

SubMulAction.ofStabilizer

Theorems

NameKindAssumesProvesValidatesDepends On
isMultiplyPretransitive 📖mathematicalMulAction.IsMultiplyPretransitive
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
SubMulAction
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
SubMulAction.instSetLike
SubMulAction.ofStabilizer
SubMulAction.mulAction
MulAction.exists_smul_eq
snoc_last
DFunLike.ext_iff
Function.Embedding.ext
snoc_castSucc
Function.Embedding.smul_apply
SubMulAction.exists_smul_of_last_eq
MulAction.IsPretransitive.exists_smul_eq
SemigroupAction.mul_smul
Fin.eq_castSucc_or_eq_last
Subtype.prop
isMultiplyPretransitive_iff 📖mathematicalMulAction.IsMultiplyPretransitive
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
SubMulAction
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
SubMulAction.instSetLike
SubMulAction.ofStabilizer
SubMulAction.mulAction
MulAction.exists_smul_eq
isMultiplyPretransitive_iff_of_conj
isMultiplyPretransitive_iff_of_conj 📖mathematicalSemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
MulAction.IsMultiplyPretransitive
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
SubMulAction
Subgroup.toGroup
Subgroup.instMulAction
SubMulAction.instSetLike
SubMulAction.ofStabilizer
SubMulAction.mulAction
MulAction.IsPretransitive.of_embedding_congr
MulEquiv.surjective
conjMap_bijective
isPretransitive_iff 📖mathematicalMulAction.IsPretransitive
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
SubMulAction
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
SubMulAction.instSetLike
SubMulAction.ofStabilizer
SubMulAction.smul'
Monoid.toMulAction
IsScalarTower.left
IsScalarTower.left
MulAction.exists_smul_eq
isPretransitive_iff_of_conj
isPretransitive_iff_of_conj 📖mathematicalSemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
MulAction.IsPretransitive
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
SubMulAction
Subgroup.toGroup
Subgroup.instMulAction
SubMulAction.instSetLike
SubMulAction.ofStabilizer
SubMulAction.smul'
Monoid.toMulAction
IsScalarTower.left
MulAction.isPretransitive_congr
MulEquiv.surjective
conjMap_bijective

alternatingGroup

Theorems

NameKindAssumesProvesValidatesDepends On
isMultiplyPretransitive 📖mathematicalMulAction.IsMultiplyPretransitive
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
Subgroup.instMulAction
Equiv.Perm.applyMulAction
Nat.card
lt_or_ge
le_of_lt
MulAction.is_zero_pretransitive
Fin.isEmpty'
Equiv.Perm.isMultiplyPretransitive
MulAction.isMultiplyPretransitive_of_le
le_rfl
Finite.of_fintype
MulAction.exists_smul_eq
Int.units_eq_one_or
Finset.card_compl
Finset.card_image_of_injective
Function.Embedding.inj'
Finset.card_univ
Nat.card_eq_fintype_card
Fintype.card_fin
tsub_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Finset.card_eq_two
Equiv.Perm.sign_mul
Equiv.Perm.sign_swap'
mul_neg
mul_one
neg_neg
Function.Embedding.ext
Finset.mem_image
Finset.mem_univ
Equiv.swap_apply_of_ne_of_ne
Finset.mem_singleton
Finset.mem_insert
Finset.notMem_compl
isPreprimitive_of_three_le_card 📖mathematicalNat.cardMulAction.IsPreprimitive
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
Equiv.Perm.applyMulAction
isPretransitive_of_three_le_card
isTrivialBlock_of_isBlock
isPretransitive_of_three_le_card 📖mathematicalNat.cardMulAction.IsPretransitive
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
Equiv.Perm.applyMulAction
MulAction.is_one_pretransitive_iff
MulAction.isMultiplyPretransitive_of_le
isMultiplyPretransitive
add_le_add_iff_right
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
le_trans
Mathlib.Meta.NormNum.isNat_le_true
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Mathlib.Meta.NormNum.isNat_ofNat
Finite.of_fintype
isTrivialBlock_of_isBlock 📖mathematicalMulAction.IsBlock
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
Equiv.Perm.applyMulAction
MulAction.IsTrivialBlockle_or_gt
MulAction.isTrivialBlock_of_card_le_two
Finite.of_fintype
le_antisymm
isPretransitive_of_three_le_card
Eq.ge
MulAction.IsPreprimitive.of_prime_card
Nat.prime_three
MulAction.IsPreprimitive.isTrivialBlock_of_isBlock
MulAction.isPreprimitive_of_is_two_pretransitive
MulAction.isMultiplyPretransitive_of_le
isMultiplyPretransitive
add_le_add_iff_right
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
le_of_lt

---

← Back to Index