Documentation Verification Report

Primitive

πŸ“ Source: Mathlib/GroupTheory/GroupAction/Primitive.lean

Statistics

MetricCount
DefinitionsIsPreprimitive, IsQuasiPreprimitive, IsPreprimitive, IsQuasiPreprimitive
4
Theoremssubsingleton_or_eq_univ, exists_mem_vadd_and_notMem_vadd, isCoatom_stabilizer_of_isPreprimitive, isQuasiPreprimitive, isTrivialBlock_of_isBlock, mk', of_card_lt, of_isTrivialBlock_base, of_isTrivialBlock_of_notMem_fixedPoints, of_prime_card, of_subsingleton, of_surjective, toIsPretransitive, isPretransitive_of_normal, toIsPretransitive, isCoatom_stabilizer_iff_preprimitive, isPreprimitive_congr, isSimpleOrder_blockMem_iff_isPreprimitive, subsingleton_or_eq_univ, exists_mem_smul_and_notMem_smul, isCoatom_stabilizer_of_isPreprimitive, isQuasiPreprimitive, isTrivialBlock_of_isBlock, mk', of_card_lt, of_isTrivialBlock_base, of_isTrivialBlock_of_notMem_fixedPoints, of_prime_card, of_subsingleton, of_surjective, toIsPretransitive, isPretransitive_of_normal, toIsPretransitive, isCoatom_stabilizer_iff_preprimitive, isPreprimitive_congr, isSimpleOrder_blockMem_iff_isPreprimitive, isTrivialBlock_of_card_le_two
37
Total41

AddAction

Definitions

NameCategoryTheorems
IsPreprimitive πŸ“–CompData
17 mathmath: IsPreprimitive.of_isTrivialBlock_base, isPreprimitive_ofFixingAddSubgroup_conj_iff, IsPreprimitive.of_isTrivialBlock_of_notMem_fixedPoints, IsPreprimitive.of_surjective, isSimpleOrder_blockMem_iff_isPreprimitive, is_zero_preprimitive_iff, isPreprimitive_congr, isPreprimitive_of_is_two_pretransitive, isMultiplyPreprimitive_iff, IsMultiplyPreprimitive.isPreprimitive_ofFixingAddSubgroup, IsPreprimitive.mk', IsPreprimitive.of_subsingleton, IsPreprimitive.of_prime_card, isPreprimitive_fixingAddSubgroup_insert_iff, isCoatom_stabilizer_iff_preprimitive, isPreprimitive_of_fixingAddSubgroup_empty_iff, IsPreprimitive.of_card_lt
IsQuasiPreprimitive πŸ“–CompData
1 mathmath: IsPreprimitive.isQuasiPreprimitive

Theorems

NameKindAssumesProvesValidatesDepends On
isCoatom_stabilizer_iff_preprimitive πŸ“–mathematicalβ€”IsCoatom
AddSubgroup
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
BoundedOrder.toOrderTop
Preorder.toLE
CompleteLattice.toBoundedOrder
AddSubgroup.instCompleteLattice
stabilizer
IsPreprimitive
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
β€”isSimpleOrder_blockMem_iff_isPreprimitive
Set.isSimpleOrder_Ici_iff_isCoatom
isSimpleOrder_iff_isCoatom_bot
OrderIso.isCoatom_iff
OrderIso.map_bot
isPreprimitive_congr πŸ“–mathematicalFunction.Bijective
DFunLike.coe
AddActionHom
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
instFunLikeAddActionHom
IsPreprimitiveβ€”IsPreprimitive.of_surjective
Function.Bijective.surjective
isPretransitive_congr
IsPreprimitive.toIsPretransitive
Set.preimage_image_eq
Function.Bijective.injective
IsTrivialBlock.preimage
IsPreprimitive.isTrivialBlock_of_isBlock
IsBlock.image
isSimpleOrder_blockMem_iff_isPreprimitive πŸ“–mathematicalβ€”IsSimpleOrder
BlockMem
Set
Set.instLE
Set.instMembership
IsBlock
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
BlockMem.instBoundedOrder
IsPreprimitive
β€”IsSimpleOrder.eq_bot_or_eq_top
IsPreprimitive.of_isTrivialBlock_base
Set.subsingleton_singleton
BlockMem.instNontrivial
IsPreprimitive.isTrivialBlock_of_isBlock
Set.Subsingleton.eq_singleton_of_mem
Set.singleton_ne_univ

AddAction.IsBlock

Theorems

NameKindAssumesProvesValidatesDepends On
subsingleton_or_eq_univ πŸ“–mathematicalAddAction.IsBlockSet.Subsingleton
Set.univ
β€”AddAction.IsPreprimitive.isTrivialBlock_of_isBlock

AddAction.IsPreprimitive

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem_vadd_and_notMem_vadd πŸ“–mathematicalSet.NonemptySet
Set.instMembership
HVAdd.hVAdd
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”isTrivialBlock_of_isBlock
AddAction.IsBlock.of_subset
AddAction.IsQuasiPreprimitive.toIsPretransitive
isQuasiPreprimitive
Set.Subsingleton.eq_singleton_of_mem
Set.mem_iInter
AddAction.exists_vadd_eq
Set.biInter_subset_of_mem
eq_neg_vadd_iff
Set.univ_subset_iff
Set.vadd_set_univ
Set.mem_singleton_iff
isCoatom_stabilizer_of_isPreprimitive πŸ“–mathematicalβ€”IsCoatom
AddSubgroup
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
BoundedOrder.toOrderTop
Preorder.toLE
CompleteLattice.toBoundedOrder
AddSubgroup.instCompleteLattice
AddAction.stabilizer
β€”AddAction.isCoatom_stabilizer_iff_preprimitive
toIsPretransitive
isQuasiPreprimitive πŸ“–mathematicalβ€”AddAction.IsQuasiPreprimitiveβ€”toIsPretransitive
Set.ne_univ_iff_exists_notMem
AddAction.isPretransitive_iff_orbit_eq_univ
isTrivialBlock_of_isBlock
AddAction.IsBlock.orbit_of_normal
AddAction.mem_fixedPoints
Set.mem_singleton_iff
Set.ext
Set.Subsingleton.eq_singleton_of_mem
AddAction.mem_orbit_self
isTrivialBlock_of_isBlock πŸ“–mathematicalAddAction.IsBlockAddAction.IsTrivialBlockβ€”β€”
mk' πŸ“–mathematicalAddAction.IsTrivialBlockAddAction.IsPreprimitive
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”Set.ne_univ_iff_exists_notMem
of_isTrivialBlock_of_notMem_fixedPoints
of_card_lt πŸ“–mathematicalNat.card
Set.ncard
Set.range
DFunLike.coe
AddActionHom
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instFunLikeAddActionHom
AddAction.IsPreprimitiveβ€”Set.eq_empty_or_nonempty
Set.subsingleton_empty
AddAction.IsTrivialBlock.eq_1
lt_of_mul_lt_mul_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.instIsStrictOrderedRing
lt_of_le_of_lt
AddAction.IsBlock.ncard_block_add_ncard_orbit_eq
Subtype.finite
Set.instFinite
Setoid.IsPartition.ncard_eq_finsum
AddAction.IsBlock.isBlockSystem
Set.toFinite
finsum_eq_sum_of_fintype
le_trans
Finset.sum_le_card_nsmul
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Set.image_preimage_eq_range_inter
Set.Subsingleton.image
isTrivialBlock_of_isBlock
AddAction.IsBlock.preimage
AddAction.IsBlock.translate
AddAction.IsBlock.eq_univ_of_card_lt
lt_of_lt_of_le
mul_comm
mul_le_mul_iff_leftβ‚€
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
Nat.succ_pos'
Set.ncard_le_ncard
Set.preimage_eq_univ_iff
Set.ncard_image_le
Set.ncard_le_one_iff_subsingleton
Finite.Set.finite_inter_of_left
nsmul_one
Finset.card_univ
Set.toFinset_card
Set.ncard_eq_toFinset_card'
AddAction.orbit.eq_1
Nat.cast_id
le_refl
zero_le
Nat.instCanonicallyOrderedAdd
of_isTrivialBlock_base πŸ“–mathematicalAddAction.IsTrivialBlockAddAction.IsPreprimitive
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”Set.eq_empty_or_nonempty
Set.subsingleton_empty
AddAction.exists_vadd_eq
AddAction.IsTrivialBlock.vadd_iff
AddAction.IsBlock.translate
of_isTrivialBlock_of_notMem_fixedPoints πŸ“–mathematicalSet
Set.instMembership
AddAction.fixedPoints
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.IsTrivialBlock
AddAction.IsPreprimitive
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
β€”AddAction.isPretransitive_iff_base
AddAction.mem_orbit_self
AddAction.IsBlock.orbit
AddAction.mem_fixedPoints
Set.mem_singleton_iff
Set.subsingleton_iff_singleton
AddAction.mem_orbit
AddAction.mem_orbit_iff
Set.mem_univ
Set.eq_empty_or_nonempty
Set.subsingleton_empty
AddAction.exists_vadd_eq
AddAction.IsTrivialBlock.vadd_iff
AddAction.IsBlock.translate
of_prime_card πŸ“–mathematicalNat.Prime
Nat.card
AddAction.IsPreprimitive
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”Nat.card_ne_zero
Nat.Prime.ne_zero
Set.eq_univ_iff_ncard
Nat.Prime.dvd_iff_eq
LT.lt.ne'
Set.one_lt_ncard
Set.toFinite
Subtype.finite
AddAction.IsBlock.ncard_dvd_card
Set.Nontrivial.nonempty
Set.subsingleton_or_nontrivial
of_subsingleton πŸ“–mathematicalβ€”AddAction.IsPreprimitiveβ€”Set.subsingleton_of_subsingleton
of_surjective πŸ“–mathematicalDFunLike.coe
AddActionHom
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instFunLikeAddActionHom
AddAction.IsPreprimitiveβ€”AddAction.IsPretransitive.of_surjective_map
toIsPretransitive
Set.image_preimage_eq
AddAction.IsTrivialBlock.image
isTrivialBlock_of_isBlock
AddAction.IsBlock.preimage
toIsPretransitive πŸ“–mathematicalβ€”AddAction.IsPretransitiveβ€”β€”

AddAction.IsQuasiPreprimitive

Theorems

NameKindAssumesProvesValidatesDepends On
isPretransitive_of_normal πŸ“–mathematicalβ€”AddAction.IsPretransitive
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup.toAddGroup
AddAction.toAddSemigroupAction
AddSubgroup.instAddAction
β€”β€”
toIsPretransitive πŸ“–mathematicalβ€”AddAction.IsPretransitive
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”β€”

MulAction

Definitions

NameCategoryTheorems
IsPreprimitive πŸ“–CompData
28 mathmath: IsPreprimitive.of_isTrivialBlock_of_notMem_fixedPoints, IsPreprimitive.of_surjective, isPreprimitive_of_fixingSubgroup_empty_iff, IsPreprimitive.of_card_lt, alternatingGroup.isPreprimitive_of_three_le_card, isPreprimitive_of_is_two_pretransitive, is_one_preprimitive_iff, AlternatingGroup.isPreprimitive_of_three_le_card, isPreprimitive_ofFixingSubgroup_conj_iff, isCoatom_stabilizer_iff_preprimitive, Equiv.Perm.stabilizer_isPreprimitive, isPreprimitive_fixingSubgroup_insert_iff, isPreprimitive_stabilizer_subgroup, IsMultiplyPreprimitive.isPreprimitive_ofFixingSubgroup, IsPreprimitive.of_prime_card, isMultiplyPreprimitive_iff, IsPreprimitive.of_isTrivialBlock_base, isSimpleOrder_blockMem_iff_isPreprimitive, Equiv.Perm.instIsPreprimitive, alternatingGroup.stabilizer_isPreprimitive, isPreprimitive_stabilizer_of_surjective, Set.powersetCard.isPreprimitive_perm, Set.powersetCard.isPreprimitive_alternatingGroup, IsPreprimitive.mk', SubMulAction.IsPreprimitive.isPreprimitive_ofFixingSubgroup_inter, isPreprimitive_congr, alternatingGroup.stabilizer_subgroup_isPreprimitive, IsPreprimitive.of_subsingleton
IsQuasiPreprimitive πŸ“–CompData
1 mathmath: IsPreprimitive.isQuasiPreprimitive

Theorems

NameKindAssumesProvesValidatesDepends On
isCoatom_stabilizer_iff_preprimitive πŸ“–mathematicalβ€”IsCoatom
Subgroup
PartialOrder.toPreorder
Subgroup.instPartialOrder
BoundedOrder.toOrderTop
Preorder.toLE
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
stabilizer
IsPreprimitive
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
β€”isSimpleOrder_blockMem_iff_isPreprimitive
Set.isSimpleOrder_Ici_iff_isCoatom
OrderIso.isCoatom_iff
OrderIso.map_bot
isPreprimitive_congr πŸ“–mathematicalFunction.Bijective
DFunLike.coe
MulActionHom
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
instFunLikeMulActionHom
IsPreprimitiveβ€”IsPreprimitive.of_surjective
Function.Bijective.surjective
isPretransitive_congr
IsPreprimitive.toIsPretransitive
Set.preimage_image_eq
Function.Bijective.injective
IsTrivialBlock.preimage
IsPreprimitive.isTrivialBlock_of_isBlock
IsBlock.image
isSimpleOrder_blockMem_iff_isPreprimitive πŸ“–mathematicalβ€”IsSimpleOrder
BlockMem
Set
Set.instLE
Set.instMembership
IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
BlockMem.instBoundedOrder
IsPreprimitive
β€”IsSimpleOrder.eq_bot_or_eq_top
IsPreprimitive.of_isTrivialBlock_base
Set.subsingleton_singleton
BlockMem.instNontrivial
IsPreprimitive.isTrivialBlock_of_isBlock
Set.Subsingleton.eq_singleton_of_mem
isTrivialBlock_of_card_le_two πŸ“–mathematicalNat.cardIsTrivialBlockβ€”IsTrivialBlock.eq_1
Set.ncard_le_one_iff_subsingleton
Subtype.finite
Set.eq_univ_iff_ncard
Set.ncard_le_card

MulAction.IsBlock

Theorems

NameKindAssumesProvesValidatesDepends On
subsingleton_or_eq_univ πŸ“–mathematicalMulAction.IsBlockSet.Subsingleton
Set.univ
β€”MulAction.IsPreprimitive.isTrivialBlock_of_isBlock

MulAction.IsPreprimitive

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem_smul_and_notMem_smul πŸ“–mathematicalSet.NonemptySet
Set.instMembership
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”isTrivialBlock_of_isBlock
MulAction.IsBlock.of_subset
MulAction.IsQuasiPreprimitive.toIsPretransitive
isQuasiPreprimitive
Set.Subsingleton.eq_singleton_of_mem
Set.mem_iInter
MulAction.exists_smul_eq
Set.biInter_subset_of_mem
eq_inv_smul_iff
Set.univ_subset_iff
Set.smul_set_univ
Set.mem_singleton_iff
isCoatom_stabilizer_of_isPreprimitive πŸ“–mathematicalβ€”IsCoatom
Subgroup
PartialOrder.toPreorder
Subgroup.instPartialOrder
BoundedOrder.toOrderTop
Preorder.toLE
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
MulAction.stabilizer
β€”MulAction.isCoatom_stabilizer_iff_preprimitive
toIsPretransitive
isQuasiPreprimitive πŸ“–mathematicalβ€”MulAction.IsQuasiPreprimitiveβ€”toIsPretransitive
Set.ne_univ_iff_exists_notMem
MulAction.isPretransitive_iff_orbit_eq_univ
isTrivialBlock_of_isBlock
MulAction.IsBlock.orbit_of_normal
Set.mem_singleton_iff
Set.ext
Set.Subsingleton.eq_singleton_of_mem
MulAction.mem_orbit_self
isTrivialBlock_of_isBlock πŸ“–mathematicalMulAction.IsBlockMulAction.IsTrivialBlockβ€”β€”
mk' πŸ“–mathematicalMulAction.IsTrivialBlockMulAction.IsPreprimitive
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”of_isTrivialBlock_of_notMem_fixedPoints
of_card_lt πŸ“–mathematicalNat.card
Set.ncard
Set.range
DFunLike.coe
MulActionHom
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instFunLikeMulActionHom
MulAction.IsPreprimitiveβ€”Set.eq_empty_or_nonempty
MulAction.IsTrivialBlock.eq_1
lt_of_mul_lt_mul_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.instIsStrictOrderedRing
lt_of_le_of_lt
MulAction.IsBlock.ncard_block_mul_ncard_orbit_eq
Subtype.finite
Set.instFinite
Setoid.IsPartition.ncard_eq_finsum
MulAction.IsBlock.isBlockSystem
Set.toFinite
finsum_eq_sum_of_fintype
le_trans
Finset.sum_le_card_nsmul
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Set.image_preimage_eq_range_inter
Set.Subsingleton.image
isTrivialBlock_of_isBlock
MulAction.IsBlock.preimage
MulAction.IsBlock.translate
MulAction.IsBlock.eq_univ_of_card_lt
lt_of_lt_of_le
mul_comm
mul_le_mul_iff_leftβ‚€
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
Nat.succ_pos'
Set.ncard_le_ncard
Set.ncard_image_le
Finite.Set.finite_inter_of_left
nsmul_one
Finset.card_univ
Set.toFinset_card
Set.ncard_eq_toFinset_card'
MulAction.orbit.eq_1
Nat.cast_id
le_refl
zero_le
Nat.instCanonicallyOrderedAdd
of_isTrivialBlock_base πŸ“–mathematicalMulAction.IsTrivialBlockMulAction.IsPreprimitive
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”Set.eq_empty_or_nonempty
MulAction.exists_smul_eq
MulAction.IsTrivialBlock.smul_iff
MulAction.IsBlock.translate
of_isTrivialBlock_of_notMem_fixedPoints πŸ“–mathematicalSet
Set.instMembership
MulAction.fixedPoints
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.IsTrivialBlock
MulAction.IsPreprimitive
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”MulAction.isPretransitive_iff_base
MulAction.mem_orbit_self
MulAction.IsBlock.orbit
Set.mem_singleton_iff
Set.subsingleton_iff_singleton
MulAction.mem_orbit
MulAction.mem_orbit_iff
Set.mem_univ
Set.eq_empty_or_nonempty
MulAction.exists_smul_eq
MulAction.IsTrivialBlock.smul_iff
MulAction.IsBlock.translate
of_prime_card πŸ“–mathematicalNat.Prime
Nat.card
MulAction.IsPreprimitive
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”Nat.card_ne_zero
Nat.Prime.ne_zero
Set.eq_univ_iff_ncard
Nat.Prime.dvd_iff_eq
LT.lt.ne'
Set.one_lt_ncard
Set.toFinite
Subtype.finite
MulAction.IsBlock.ncard_dvd_card
Set.Nontrivial.nonempty
Set.subsingleton_or_nontrivial
of_subsingleton πŸ“–mathematicalβ€”MulAction.IsPreprimitiveβ€”Set.subsingleton_of_subsingleton
of_surjective πŸ“–mathematicalDFunLike.coe
MulActionHom
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instFunLikeMulActionHom
MulAction.IsPreprimitiveβ€”MulAction.IsPretransitive.of_surjective_map
toIsPretransitive
Set.image_preimage_eq
MulAction.IsTrivialBlock.image
isTrivialBlock_of_isBlock
MulAction.IsBlock.preimage
toIsPretransitive πŸ“–mathematicalβ€”MulAction.IsPretransitiveβ€”β€”

MulAction.IsQuasiPreprimitive

Theorems

NameKindAssumesProvesValidatesDepends On
isPretransitive_of_normal πŸ“–mathematicalβ€”MulAction.IsPretransitive
Subgroup
SetLike.instMembership
Subgroup.instSetLike
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
β€”β€”
toIsPretransitive πŸ“–mathematicalβ€”MulAction.IsPretransitive
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”β€”

---

← Back to Index