Documentation Verification Report

Quotient

πŸ“ Source: Mathlib/GroupTheory/GroupAction/Quotient.lean

Statistics

MetricCount
DefinitionsQuotientAction, addLeftCosetsCompSubtypeVal, equivAddSubgroupOrbits, equivAddSubgroupOrbitsQuotientAddGroup, equivAddSubgroupOrbitsSetoidComap, ofQuotientStabilizer, orbitEquivQuotientStabilizer, orbitProdStabilizerEquivAddGroup, quotient, selfEquivOrbitsQuotientProd, selfEquivOrbitsQuotientProd', selfEquivSigmaOrbitsQuotientStabilizer, selfEquivSigmaOrbitsQuotientStabilizer', sigmaFixedByEquivOrbitsProdAddGroup, QuotientAction, equivSubgroupOrbits, equivSubgroupOrbitsQuotientGroup, equivSubgroupOrbitsSetoidComap, mulLeftCosetsCompSubtypeVal, ofQuotientStabilizer, orbitEquivQuotientStabilizer, orbitProdStabilizerEquivGroup, quotient, selfEquivOrbitsQuotientProd, selfEquivOrbitsQuotientProd', selfEquivSigmaOrbitsQuotientStabilizer, selfEquivSigmaOrbitsQuotientStabilizer', sigmaFixedByEquivOrbitsProdGroup, toQuotient, quotientCenterEmbedding, quotientCentralizerEmbedding
31
Theoremscoe_vadd_out, mk_vadd_out, vadd_coe, vadd_mk, inv_mul_mem, card_orbit_mul_card_stabilizer_eq_card_addGroup, finite_quotient_of_finite_quotient_of_finite_quotient, finite_quotient_of_pretransitive_of_finite_quotient, injective_ofQuotientStabilizer, isPretransitive_quotient, left_quotientAction, ofQuotientStabilizer_mem_orbit, ofQuotientStabilizer_mk, ofQuotientStabilizer_vadd, orbitEquivQuotientStabilizer_symm_apply, right_quotientAction, right_quotientAction', stabilizer_quotient, sum_card_fixedBy_eq_card_orbits_mul_card_addGroup, card_carrier, coe_smul_out, mk_smul_out, smul_coe, smul_mk, inv_mul_mem, card_orbit_mul_card_stabilizer_eq_card_group, finite_quotient_of_finite_quotient_of_finite_quotient, finite_quotient_of_pretransitive_of_finite_quotient, injective_ofQuotientStabilizer, isPretransitive_quotient, left_quotientAction, ofQuotientStabilizer_mem_orbit, ofQuotientStabilizer_mk, ofQuotientStabilizer_smul, orbitEquivQuotientStabilizer_symm_apply, right_quotientAction, right_quotientAction', stabilizer_quotient, sum_card_fixedBy_eq_card_orbits_mul_card_group, toQuotient_apply, out_conj_pow_minimalPeriod_mem, normalCore_eq_ker, quotientCenterEmbedding_apply, quotientCentralizerEmbedding_apply
44
Total75

AddAction

Definitions

NameCategoryTheorems
QuotientAction πŸ“–CompData
3 mathmath: left_quotientAction, right_quotientAction, right_quotientAction'
addLeftCosetsCompSubtypeVal πŸ“–CompOpβ€”
equivAddSubgroupOrbits πŸ“–CompOpβ€”
equivAddSubgroupOrbitsQuotientAddGroup πŸ“–CompOpβ€”
equivAddSubgroupOrbitsSetoidComap πŸ“–CompOpβ€”
ofQuotientStabilizer πŸ“–CompOp
4 mathmath: injective_ofQuotientStabilizer, ofQuotientStabilizer_mem_orbit, ofQuotientStabilizer_vadd, ofQuotientStabilizer_mk
orbitEquivQuotientStabilizer πŸ“–CompOp
1 mathmath: orbitEquivQuotientStabilizer_symm_apply
orbitProdStabilizerEquivAddGroup πŸ“–CompOpβ€”
quotient πŸ“–CompOp
13 mathmath: QuotientAddGroup.measurableVAdd, Quotient.vadd_coe, Quotient.coe_vadd_out, QuotientAddGroup.instContinuousVAdd, Quotient.mk_vadd_out, AddSubgroup.vadd_leftQuotientEquiv, QuotientAddGroup.instContinuousConstVAdd, Quotient.vadd_mk, AddSubgroup.vadd_apply_eq_vadd_apply_neg_vadd, MeasureTheory.AddQuotientMeasureEqMeasurePreimage.vaddInvariantMeasure_quotient, ofQuotientStabilizer_vadd, isPretransitive_quotient, stabilizer_quotient
selfEquivOrbitsQuotientProd πŸ“–CompOpβ€”
selfEquivOrbitsQuotientProd' πŸ“–CompOpβ€”
selfEquivSigmaOrbitsQuotientStabilizer πŸ“–CompOpβ€”
selfEquivSigmaOrbitsQuotientStabilizer' πŸ“–CompOpβ€”
sigmaFixedByEquivOrbitsProdAddGroup πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
card_orbit_mul_card_stabilizer_eq_card_addGroup πŸ“–mathematicalβ€”Fintype.card
Set.Elem
orbit
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
stabilizer
β€”Fintype.card_prod
Fintype.card_congr
finite_quotient_of_finite_quotient_of_finite_quotient πŸ“–mathematicalβ€”Finite
orbitRel.Quotient
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.toAddGroup
instAddAction
β€”Equiv.finite_iff
Finite.instSigma
finite_quotient_of_pretransitive_of_finite_quotient
instIsPretransitiveElemOrbit_1
finite_quotient_of_pretransitive_of_finite_quotient πŸ“–mathematicalβ€”Finite
orbitRel.Quotient
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.toAddGroup
instAddAction
β€”isEmpty_or_nonempty
Quotient.finite
Finite.of_subsingleton
IsEmpty.instSubsingleton
Finite.of_equiv
Setoid.symm'
Quotient.eq
orbitRel_apply
mem_orbit_iff
QuotientAddGroup.rightRel_eq
AddSemigroupAction.add_vadd
neg_vadd_vadd
Finite.of_surjective
Quotient.surjective_liftOn'
Quotient.mk''_surjective
surjective_vadd
injective_ofQuotientStabilizer πŸ“–mathematicalβ€”HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
stabilizer
ofQuotientStabilizer
β€”Quotient.inductionOnβ‚‚'
Quotient.sound'
QuotientAddGroup.leftRel_apply
AddSemigroupAction.add_vadd
neg_vadd_vadd
isPretransitive_quotient πŸ“–mathematicalβ€”IsPretransitive
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
quotient
AddMonoid.toAddAction
left_quotientAction
β€”left_quotientAction
QuotientAddGroup.eq
neg_add_cancel_right
neg_add_cancel
AddSubgroup.zero_mem
left_quotientAction πŸ“–mathematicalβ€”QuotientAction
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoid.toAddAction
β€”vadd_eq_add
neg_add_rev
add_assoc
neg_add_cancel_left
ofQuotientStabilizer_mem_orbit πŸ“–mathematicalβ€”Set
Set.instMembership
orbit
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
ofQuotientStabilizer
β€”Quotient.inductionOn'
ofQuotientStabilizer_mk πŸ“–mathematicalβ€”ofQuotientStabilizer
stabilizer
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
β€”β€”
ofQuotientStabilizer_vadd πŸ“–mathematicalβ€”ofQuotientStabilizer
HVAdd.hVAdd
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
stabilizer
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
quotient
AddMonoid.toAddAction
left_quotientAction
β€”Quotient.inductionOn'
left_quotientAction
AddSemigroupAction.add_vadd
orbitEquivQuotientStabilizer_symm_apply πŸ“–mathematicalβ€”Set
Set.instMembership
orbit
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSemigroupAction
DFunLike.coe
Equiv
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
stabilizer
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
orbitEquivQuotientStabilizer
HVAdd.hVAdd
instHVAdd
β€”β€”
right_quotientAction πŸ“–mathematicalβ€”QuotientAction
AddOpposite
AddSubgroup
AddOpposite.instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.op
AddSubgroup.normalizer
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup.toAddGroup
instAddAction
AddMonoid.toOppositeAddAction
β€”AddSubgroup.vadd_def
AddOpposite.vadd_eq_add_unop
neg_add_rev
add_assoc
AddSubgroup.mem_normalizer_iff'
Subtype.prop
add_neg_cancel_left
right_quotientAction' πŸ“–mathematicalβ€”QuotientAction
AddOpposite
AddOpposite.instAddMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoid.toOppositeAddAction
β€”AddOpposite.vadd_eq_add_unop
neg_add_rev
add_assoc
AddSubgroup.Normal.mem_comm_iff
add_neg_cancel_right
stabilizer_quotient πŸ“–mathematicalβ€”stabilizer
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
quotient
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoid.toAddAction
left_quotientAction
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”AddSubgroup.ext
left_quotientAction
mem_stabilizer_iff
add_zero
QuotientAddGroup.eq
neg_mem_iff
AddSubgroupClass.toNegMemClass
AddSubgroup.instAddSubgroupClass
sum_card_fixedBy_eq_card_orbits_mul_card_addGroup πŸ“–mathematicalβ€”Finset.sum
Nat.instAddCommMonoid
Finset.univ
Fintype.card
Set.Elem
fixedBy
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
orbitRel
β€”Fintype.card_prod
Fintype.card_sigma
Fintype.card_congr

AddAction.Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
coe_vadd_out πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
Quotient.out
QuotientAddGroup.leftRel
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
AddAction.quotient
β€”mk_vadd_out
mk_vadd_out πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
Quotient.out
QuotientAddGroup.leftRel
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
AddAction.quotient
β€”QuotientAddGroup.out_eq'
vadd_coe πŸ“–mathematicalβ€”HVAdd.hVAdd
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddAction.quotient
β€”β€”
vadd_mk πŸ“–mathematicalβ€”HVAdd.hVAdd
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddAction.quotient
β€”β€”

AddAction.QuotientAction

Theorems

NameKindAssumesProvesValidatesDepends On
inv_mul_mem πŸ“–mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddAction.toAddSemigroupAction
β€”β€”

ConjClasses

Theorems

NameKindAssumesProvesValidatesDepends On
card_carrier πŸ“–mathematicalβ€”Fintype.card
Set.Elem
carrier
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ConjAct
Subgroup
ConjAct.instGroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
MulDistribMulAction.toMulAction
ConjAct.instMulDistribMulAction
β€”Fintype.card_congr
MulAction.card_orbit_mul_card_stabilizer_eq_card_group
Fintype.card_pos_iff
One.instNonempty
Fintype.card_congr'
ConjAct.orbit_eq_carrier_conjClasses

MulAction

Definitions

NameCategoryTheorems
QuotientAction πŸ“–CompData
3 mathmath: right_quotientAction', right_quotientAction, left_quotientAction
equivSubgroupOrbits πŸ“–CompOpβ€”
equivSubgroupOrbitsQuotientGroup πŸ“–CompOpβ€”
equivSubgroupOrbitsSetoidComap πŸ“–CompOpβ€”
mulLeftCosetsCompSubtypeVal πŸ“–CompOp
7 mathmath: Subgroup.quotientEquivSigmaZMod_apply, Subgroup.transferTransversal_apply', Subgroup.transferFunction_apply, Subgroup.transferTransversal_apply'', Subgroup.quotientEquivSigmaZMod_symm_apply, MonoidHom.transfer_eq_prod_quotient_orbitRel_zpowers_quot, Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer
ofQuotientStabilizer πŸ“–CompOp
4 mathmath: ofQuotientStabilizer_mem_orbit, ofQuotientStabilizer_mk, injective_ofQuotientStabilizer, ofQuotientStabilizer_smul
orbitEquivQuotientStabilizer πŸ“–CompOp
1 mathmath: orbitEquivQuotientStabilizer_symm_apply
orbitProdStabilizerEquivGroup πŸ“–CompOpβ€”
quotient πŸ“–CompOp
29 mathmath: Quotient.coe_smul_out, Quotient.smul_mk, Subgroup.smul_leftQuotientEquiv, Subgroup.smul_apply_eq_smul_apply_inv_smul, Action.FintypeCat.toEndHom_apply, isPretransitive_quotient, QuotientGroup.measurableSMul, MeasureTheory.QuotientMeasureEqMeasurePreimage.smulInvariantMeasure_quotient, Subgroup.quotientEquivSigmaZMod_apply, Action.FintypeCat.quotientToEndHom_mk, stabilizer_quotient, Quotient.mk_smul_out, Subgroup.transferTransversal_apply', QuotientGroup.instContinuousSMul, MulActionHom.toQuotient_apply, CategoryTheory.PreGaloisCategory.has_decomp_quotients, Action.FintypeCat.quotientToQuotientOfLE_hom_mk, Subgroup.normalCore_eq_ker, QuotientGroup.instContinuousConstSMul, Subgroup.transferFunction_apply, Subgroup.transferTransversal_apply'', Subgroup.quotientEquivSigmaZMod_symm_apply, CategoryTheory.PreGaloisCategory.exists_lift_of_quotient_openSubgroup, MonoidHom.transfer_eq_prod_quotient_orbitRel_zpowers_quot, ofQuotientStabilizer_smul, Quotient.smul_coe, Action.FintypeCat.toEndHom_trivial_of_mem, QuotientGroup.out_conj_pow_minimalPeriod_mem, AlternatingMap.domCoprod.summand_add_swap_smul_eq_zero
selfEquivOrbitsQuotientProd πŸ“–CompOpβ€”
selfEquivOrbitsQuotientProd' πŸ“–CompOpβ€”
selfEquivSigmaOrbitsQuotientStabilizer πŸ“–CompOpβ€”
selfEquivSigmaOrbitsQuotientStabilizer' πŸ“–CompOpβ€”
sigmaFixedByEquivOrbitsProdGroup πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
card_orbit_mul_card_stabilizer_eq_card_group πŸ“–mathematicalβ€”Fintype.card
Set.Elem
orbit
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
Subgroup
SetLike.instMembership
Subgroup.instSetLike
stabilizer
β€”Fintype.card_prod
Fintype.card_congr
finite_quotient_of_finite_quotient_of_finite_quotient πŸ“–mathematicalβ€”Finite
orbitRel.Quotient
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
instMulAction
β€”Equiv.finite_iff
Finite.instSigma
finite_quotient_of_pretransitive_of_finite_quotient
instIsPretransitiveElemOrbit_1
finite_quotient_of_pretransitive_of_finite_quotient πŸ“–mathematicalβ€”Finite
orbitRel.Quotient
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
instMulAction
β€”isEmpty_or_nonempty
Quotient.finite
Finite.of_subsingleton
IsEmpty.instSubsingleton
Finite.of_equiv
Setoid.symm'
QuotientGroup.rightRel_eq
SemigroupAction.mul_smul
inv_smul_smul
Finite.of_surjective
Quotient.surjective_liftOn'
Quotient.mk''_surjective
surjective_smul
injective_ofQuotientStabilizer πŸ“–mathematicalβ€”HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
stabilizer
ofQuotientStabilizer
β€”Quotient.inductionOnβ‚‚'
Quotient.sound'
QuotientGroup.leftRel_apply
SemigroupAction.mul_smul
inv_smul_smul
isPretransitive_quotient πŸ“–mathematicalβ€”IsPretransitive
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
quotient
Monoid.toMulAction
left_quotientAction
β€”left_quotientAction
QuotientGroup.eq
inv_mul_cancel_right
inv_mul_cancel
Subgroup.one_mem
left_quotientAction πŸ“–mathematicalβ€”QuotientAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Monoid.toMulAction
β€”smul_eq_mul
mul_inv_rev
mul_assoc
inv_mul_cancel_left
ofQuotientStabilizer_mem_orbit πŸ“–mathematicalβ€”Set
Set.instMembership
orbit
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
ofQuotientStabilizer
β€”Quotient.inductionOn'
ofQuotientStabilizer_mk πŸ“–mathematicalβ€”ofQuotientStabilizer
stabilizer
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
β€”β€”
ofQuotientStabilizer_smul πŸ“–mathematicalβ€”ofQuotientStabilizer
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
stabilizer
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
quotient
Monoid.toMulAction
left_quotientAction
β€”Quotient.inductionOn'
left_quotientAction
SemigroupAction.mul_smul
orbitEquivQuotientStabilizer_symm_apply πŸ“–mathematicalβ€”Set
Set.instMembership
orbit
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSemigroupAction
DFunLike.coe
Equiv
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
stabilizer
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
orbitEquivQuotientStabilizer
β€”β€”
right_quotientAction πŸ“–mathematicalβ€”QuotientAction
MulOpposite
Subgroup
MulOpposite.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.op
Subgroup.normalizer
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
instMulAction
Monoid.toOppositeMulAction
β€”Subgroup.smul_def
MulOpposite.smul_eq_mul_unop
mul_inv_rev
mul_assoc
Subgroup.mem_normalizer_iff'
Subtype.prop
mul_inv_cancel_left
right_quotientAction' πŸ“–mathematicalβ€”QuotientAction
MulOpposite
MulOpposite.instMonoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Monoid.toOppositeMulAction
β€”MulOpposite.smul_eq_mul_unop
mul_inv_rev
mul_assoc
Subgroup.Normal.mem_comm_iff
mul_inv_cancel_right
stabilizer_quotient πŸ“–mathematicalβ€”stabilizer
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
quotient
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Monoid.toMulAction
left_quotientAction
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”Subgroup.ext
left_quotientAction
mul_one
SubgroupClass.toInvMemClass
Subgroup.instSubgroupClass
sum_card_fixedBy_eq_card_orbits_mul_card_group πŸ“–mathematicalβ€”Finset.sum
Nat.instAddCommMonoid
Finset.univ
Fintype.card
Set.Elem
fixedBy
DivInvMonoid.toMonoid
Group.toDivInvMonoid
orbitRel
β€”Fintype.card_prod
Fintype.card_sigma
Fintype.card_congr

MulAction.Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
coe_smul_out πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Quotient.out
QuotientGroup.leftRel
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
MulAction.quotient
β€”mk_smul_out
mk_smul_out πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Quotient.out
QuotientGroup.leftRel
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
MulAction.quotient
β€”QuotientGroup.out_eq'
smul_coe πŸ“–mathematicalβ€”HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulAction.quotient
β€”β€”
smul_mk πŸ“–mathematicalβ€”HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulAction.quotient
β€”β€”

MulAction.QuotientAction

Theorems

NameKindAssumesProvesValidatesDepends On
inv_mul_mem πŸ“–mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”β€”

MulActionHom

Definitions

NameCategoryTheorems
toQuotient πŸ“–CompOp
1 mathmath: toQuotient_apply

Theorems

NameKindAssumesProvesValidatesDepends On
toQuotient_apply πŸ“–mathematicalβ€”DFunLike.coe
MulActionHom
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Monoid.toMulAction
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
MulAction.quotient
MulAction.left_quotientAction
instFunLikeMulActionHom
toQuotient
β€”MulAction.left_quotientAction

QuotientGroup

Theorems

NameKindAssumesProvesValidatesDepends On
out_conj_pow_minimalPeriod_mem πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Quotient.out
leftRel
Monoid.toNatPow
Function.minimalPeriod
HasQuotient.Quotient
instHasQuotientSubgroup
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulAction.quotient
Monoid.toMulAction
MulAction.left_quotientAction
β€”MulAction.left_quotientAction
mul_assoc
eq
out_eq'
smul_eq_mul
MulAction.Quotient.mk_smul_out
MulAction.pow_smul_eq_iff_minimalPeriod_dvd
dvd_refl

Subgroup

Definitions

NameCategoryTheorems
quotientCenterEmbedding πŸ“–CompOp
1 mathmath: quotientCenterEmbedding_apply
quotientCentralizerEmbedding πŸ“–CompOp
1 mathmath: quotientCentralizerEmbedding_apply

Theorems

NameKindAssumesProvesValidatesDepends On
normalCore_eq_ker πŸ“–mathematicalβ€”normalCore
MonoidHom.ker
Equiv.Perm
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
MulAction.toPermHom
MulAction.quotient
Monoid.toMulAction
MulAction.left_quotientAction
β€”le_antisymm
MulAction.left_quotientAction
Equiv.Perm.ext
QuotientGroup.induction_on
QuotientGroup.eq
smul_eq_mul
mul_inv_rev
inv_inv
inv_mem
normal_le_normalCore
MonoidHom.normal_ker
inv_mem_iff
mul_one
Equiv.Perm.ext_iff
quotientCenterEmbedding_apply πŸ“–mathematicalclosure
Top.top
Subgroup
instTop
DFunLike.coe
Function.Embedding
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
center
Function.instFunLikeEmbedding
quotientCenterEmbedding
Set
Set.instMembership
commutatorSet
Bracket.bracket
commutatorElement
β€”β€”
quotientCentralizerEmbedding_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
centralizer
Set
Set.instSingletonSet
Set.Elem
commutatorSet
Function.instFunLikeEmbedding
quotientCentralizerEmbedding
Set.instMembership
Bracket.bracket
commutatorElement
β€”β€”

---

← Back to Index