Basic
📁 Source: Mathlib/GroupTheory/GroupExtension/Basic.lean
Statistics
AddGroupExtension
Definitions
| Name | Category | Theorems |
|---|---|---|
ConjClasses 📖 | CompOp | — |
quotientKerRightHomEquivRight 📖 | CompOp | — |
quotientRangeInlEquivRight 📖 | CompOp | — |
surjInvRightHom 📖 | CompOp | — |
AddGroupExtension.Equiv
Definitions
| Name | Category | Theorems |
|---|---|---|
ofAddMonoidHom 📖 | CompOp | — |
AddGroupExtension.IsConj
Definitions
| Name | Category | Theorems |
|---|---|---|
setoid 📖 | CompOp | — |
Theorems
AddGroupExtension.Section
Definitions
| Name | Category | Theorems |
|---|---|---|
equivComp 📖 | CompOp |
Theorems
GroupExtension
Definitions
| Name | Category | Theorems |
|---|---|---|
ConjClasses 📖 | CompOp | — |
quotientKerRightHomEquivRight 📖 | CompOp | — |
quotientRangeInlEquivRight 📖 | CompOp | — |
surjInvRightHom 📖 | CompOp | — |
GroupExtension.Equiv
Definitions
| Name | Category | Theorems |
|---|---|---|
ofMonoidHom 📖 | CompOp | — |
GroupExtension.IsConj
Definitions
| Name | Category | Theorems |
|---|---|---|
setoid 📖 | CompOp | — |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
refl 📖 | mathematical | — | GroupExtension.IsConj | — | map_oneMonoidHomClass.toOneHomClassMonoidHom.instMonoidHomClassone_mulinv_onemul_one |
trans 📖 | — | GroupExtension.IsConj | — | — | map_mulMonoidHomClass.toMulHomClassMonoidHom.instMonoidHomClassmul_zpow_neg_one |
GroupExtension.Section
Definitions
| Name | Category | Theorems |
|---|---|---|
equivComp 📖 | CompOp |
Theorems
GroupExtension.Splitting
Definitions
| Name | Category | Theorems |
|---|---|---|
conjAct 📖 | CompOp | — |
semidirectProductMulEquiv 📖 | CompOp | — |
semidirectProductToGroupExtensionEquiv 📖 | CompOp | — |
SemidirectProduct
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
right_splitting 📖 | mathematical | — | rightDFunLike.coeGroupExtension.SplittingSemidirectProductinstGrouptoGroupExtensionGroupExtension.Splitting.instFunLike | — | rightHom_eq_righttoGroupExtension_rightHomGroupExtension.Splitting.rightHom_splitting |
---