| Name | Category | Theorems |
Cancels 📖 | MathDef | 2 mathmath: unitsSMul_cancels_iff, not_cancels_of_cons_hyp
|
ReducedWord 📖 | CompData | — |
TransversalPair 📖 | CompData | 1 mathmath: TransversalPair.nonempty
|
cons 📖 | CompOp | 5 mathmath: prod_cons, consRecOn_cons, smul_cons, cons_toList, cons_head
|
consRecOn 📖 | CompOp | 2 mathmath: consRecOn_cons, consRecOn_ofGroup
|
empty 📖 | CompOp | 4 mathmath: empty_head, prod_empty, empty_toList, prod_smul_empty
|
equiv 📖 | CompOp | — |
instInhabited 📖 | CompOp | — |
instMulAction 📖 | CompOp | 9 mathmath: prod_group_smul, group_smul_toList, smul_ofGroup, unitsSMul_one_group_smul, group_smul_def, instFaithfulSMul, group_smul_head, smul_cons, of_smul_eq_smul
|
instMulAction_1 📖 | CompOp | 6 mathmath: t_smul_eq_unitsSMul, prod_smul, instFaithfulSMul_1, of_smul_eq_smul, prod_smul_empty, t_pow_smul_eq_unitsSMul
|
ofGroup 📖 | CompOp | 4 mathmath: smul_ofGroup, ofGroup_head, consRecOn_ofGroup, ofGroup_toList
|
toReducedWord 📖 | CompOp | 15 mathmath: prod_group_smul, group_smul_toList, prod_smul, prod_unitsSMul, ext_iff, empty_head, prod_injective, group_smul_def, group_smul_head, prod_empty, empty_toList, ofGroup_head, prod_smul_empty, ofGroup_toList, HNNExtension.ReducedWord.exists_normalWord_prod_eq
|
unitsSMul 📖 | CompOp | 8 mathmath: t_smul_eq_unitsSMul, prod_unitsSMul, unitsSMul_cancels_iff, unitsSMul_one_group_smul, unitsSMul_neg, unitsSMulEquiv_symm_apply, unitsSMulEquiv_apply, t_pow_smul_eq_unitsSMul
|
unitsSMulEquiv 📖 | CompOp | 2 mathmath: unitsSMulEquiv_symm_apply, unitsSMulEquiv_apply
|
unitsSMulGroup 📖 | CompOp | 1 mathmath: unitsSMulGroup_snd
|
unitsSMulWithCancel 📖 | CompOp | — |