Documentation Verification Report

Basic

πŸ“ Source: Mathlib/GroupTheory/MonoidLocalization/Basic.lean

Statistics

MetricCount
DefinitionsAddLocalization, addMonoidOf, decidableEq, liftOn, liftOnβ‚‚, mk, mkHom, r, r', rec, recOnSubsingletonβ‚‚, toLocalizationMap, IsLocalizationMap, LocalizationMap, instFunLike, mk', sec, toAddHom, toAddMonoidHom, decidableEq, liftOn, liftOnβ‚‚, mk, mkHom, monoidOf, r, r', rec, recOnSubsingletonβ‚‚, toLocalizationMap, equivMonoidLocalization, localizationMap, IsLocalizationMap, LocalizationMap, instFunLike, mk', sec, toMonoidHom, toMulHom
39
Theoremsind, induction_on, induction_onβ‚‚, induction_on₃, instIsAddTorsionFree, liftOn_mk, liftOn_mk', liftOnβ‚‚_mk, liftOnβ‚‚_mk', mkHom_apply, mkHom_surjective, mk_add, mk_eq_addMonoidOf_mk', mk_eq_addMonoidOf_mk'_apply, mk_eq_mk_iff, mk_eq_mk_iff', mk_left_injective, mk_nsmul, mk_self, mk_self_mk, mk_sum, mk_zero, mk_zero_eq_addMonoidOf_mk, ndrec_mk, r_eq_r', r_iff_exists, r_iff_oreEqv_r, r_of_eq, zero_rel, addEquiv_comp, exists_of_eq, map_addUnits, map_zero, surj, add_mk'_eq_mk'_of_add, add_mk'_zero_eq_mk', add_neg, add_neg_left, add_neg_right, epic_of_localizationMap, eq, eq', eq_iff_eq, eq_iff_exists, eq_mk'_iff_add_eq, exists_of_eq, exists_of_sec_mk', ext, ext_iff, injective_iff, instAddMonoidHomClass, instIsCancelAddLocalization, instNontrivialLocalizationOfIsCancelAdd, isAddUnit_comp, isCancelAdd, isLocalizationMap, map_addUnits, map_isAddRegular, map_left_cancel, map_right_cancel, mk'_add, mk'_add_cancel_left, mk'_add_cancel_right, mk'_add_eq_mk'_of_add, mk'_cancel, mk'_eq_iff_eq, mk'_eq_iff_eq', mk'_eq_iff_eq_add, mk'_eq_iff_mk'_eq, mk'_eq_of_eq, mk'_eq_of_eq', mk'_eq_of_same, mk'_sec, mk'_self, mk'_self', mk'_spec, mk'_spec', mk'_surjective, mk'_zero, neg_inj, neg_unique, sec_spec, sec_spec', subsingleton_of_subsingleton, surj, surjβ‚‚, toAddMonoidHom_apply, toAddMonoidHom_injective, top_injective_iff, isLocalizationMap_id, isLocalizationMap_iff, isLocalizationMap_iff_bijective, isLocalizationMap_nat_int, isLocalizationMap_of_addGroup, isLocalizationMap_top_nat_int, ind, induction_on, induction_onβ‚‚, induction_on₃, instIsMulTorsionFree, instSMulCommClassOfIsScalarTower, liftOn_mk, liftOn_mk', liftOnβ‚‚_mk, liftOnβ‚‚_mk', mkHom_apply, mkHom_surjective, mk_eq_mk_iff, mk_eq_mk_iff', mk_eq_monoidOf_mk', mk_eq_monoidOf_mk'_apply, mk_left_injective, mk_mul, mk_one, mk_one_eq_monoidOf_mk, mk_pow, mk_prod, mk_self, mk_self_mk, ndrec_mk, one_rel, r_eq_r', r_iff_exists, r_iff_oreEqv_r, r_of_eq, smul_mk, exists_of_eq, map_one, map_units, mulEquiv_comp, surj, epic_of_localizationMap, eq, eq', eq_iff_eq, eq_iff_exists, eq_mk'_iff_mul_eq, exists_of_eq, exists_of_sec_mk', ext, ext_iff, injective_iff, instIsCancelMulLocalization, instMonoidHomClass, instNontrivialLocalizationOfIsCancelMul, instSubsingletonLocalization, inv_inj, inv_unique, isCancelMul, isLocalizationMap, isUnit_comp, map_isRegular, map_left_cancel, map_right_cancel, map_units, mk'_cancel, mk'_eq_iff_eq, mk'_eq_iff_eq', mk'_eq_iff_eq_mul, mk'_eq_iff_mk'_eq, mk'_eq_of_eq, mk'_eq_of_eq', mk'_eq_of_same, mk'_mul, mk'_mul_cancel_left, mk'_mul_cancel_right, mk'_mul_eq_mk'_of_mul, mk'_one, mk'_sec, mk'_self, mk'_self', mk'_spec, mk'_spec', mk'_surjective, mul_inv, mul_inv_left, mul_inv_right, mul_mk'_eq_mk'_of_mul, mul_mk'_one_eq_mk', sec_spec, sec_spec', subsingleton_of_subsingleton, surj, surjβ‚‚, toMonoidHom_apply, toMonoidHom_injective, top_injective_iff, isLocalizationMap_id, isLocalizationMap_iff, isLocalizationMap_iff_bijective, isLocalizationMap_of_group
191
Total230

AddLocalization

Definitions

NameCategoryTheorems
addMonoidOf πŸ“–CompOp
11 mathmath: liftOn_mk', mk_zero_eq_addMonoidOf_mk, addEquivOfQuotient_mk', mk_eq_addMonoidOf_mk', addEquivOfQuotient_apply, addEquivOfQuotient_symm_mk', liftOnβ‚‚_mk', Algebra.GrothendieckAddGroup.lift_apply, addEquivOfQuotient_addMonoidOf, addEquivOfQuotient_symm_addMonoidOf, mk_eq_addMonoidOf_mk'_apply
decidableEq πŸ“–CompOpβ€”
liftOn πŸ“–CompOp
2 mathmath: liftOn_mk', liftOn_mk
liftOnβ‚‚ πŸ“–CompOp
2 mathmath: liftOnβ‚‚_mk, liftOnβ‚‚_mk'
mk πŸ“–CompOpβ€”
mkHom πŸ“–CompOp
2 mathmath: mkHom_apply, mkHom_surjective
r πŸ“–CompOp
7 mathmath: r_of_eq, r_iff_exists, zero_rel, AddSubmonoid.LocalizationMap.eq', mk_eq_mk_iff, r_eq_r', r_iff_oreEqv_r
r' πŸ“–CompOp
1 mathmath: r_eq_r'
rec πŸ“–CompOpβ€”
recOnSubsingletonβ‚‚ πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ind πŸ“–β€”AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”β€”mk_eq_mk_iff
induction_on πŸ“–β€”AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”β€”ind
induction_onβ‚‚ πŸ“–β€”AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”β€”induction_on
induction_on₃ πŸ“–β€”AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”β€”induction_onβ‚‚
induction_on
instIsAddTorsionFree πŸ“–mathematicalβ€”IsAddTorsionFree
AddLocalization
AddOreLocalization.instAddMonoid
AddCommMonoid.toAddMonoid
AddOreLocalization.addOreSetComm
β€”mk_eq_mk_iff
r_iff_exists
AddSubmonoid.instAddSubmonoidClass
mk_nsmul
nsmul_right_injective
zero_nsmul
nsmul_add
succ_nsmul
add_assoc
liftOn_mk πŸ“–mathematicalβ€”liftOnβ€”β€”
liftOn_mk' πŸ“–mathematicalβ€”liftOn
AddSubmonoid.LocalizationMap.mk'
AddLocalization
AddOreLocalization.instAddCommMonoid
AddOreLocalization.addOreSetComm
addMonoidOf
β€”mk_eq_addMonoidOf_mk'
liftOnβ‚‚_mk πŸ“–mathematicalβ€”liftOnβ‚‚β€”β€”
liftOnβ‚‚_mk' πŸ“–mathematicalβ€”liftOnβ‚‚
AddSubmonoid.LocalizationMap.mk'
AddLocalization
AddOreLocalization.instAddCommMonoid
AddOreLocalization.addOreSetComm
addMonoidOf
β€”mk_eq_addMonoidOf_mk'
mkHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddLocalization
AddZeroClass.toAddZero
Prod.instAddZeroClass
AddSubmonoid.toAddZeroClass
AddOreLocalization.instAddMonoid
AddOreLocalization.addOreSetComm
AddMonoidHom.instFunLike
mkHom
β€”β€”
mkHom_surjective πŸ“–mathematicalβ€”AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddLocalization
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
AddSubmonoid.toAddZeroClass
AddOreLocalization.instAddMonoid
AddOreLocalization.addOreSetComm
AddMonoidHom.instFunLike
mkHom
β€”β€”
mk_add πŸ“–mathematicalβ€”AddLocalization
AddOreLocalization.instAdd
AddCommMonoid.toAddMonoid
AddOreLocalization.addOreSetComm
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.add
β€”AddSubmonoidClass.toAddMemClass
AddSubmonoid.instAddSubmonoidClass
AddOreLocalization.oreSub_add_oreSub
add_comm
mk_eq_addMonoidOf_mk' πŸ“–mathematicalβ€”AddSubmonoid.LocalizationMap.mk'
AddLocalization
AddOreLocalization.instAddCommMonoid
AddOreLocalization.addOreSetComm
addMonoidOf
β€”mk_eq_addMonoidOf_mk'_apply
mk_eq_addMonoidOf_mk'_apply πŸ“–mathematicalβ€”AddSubmonoid.LocalizationMap.mk'
AddLocalization
AddOreLocalization.instAddCommMonoid
AddOreLocalization.addOreSetComm
addMonoidOf
β€”AddSubmonoid.LocalizationMap.map_addUnits
AddSubmonoid.instAddSubmonoidClass
AddSubmonoid.LocalizationMap.add_neg_right
mk_add
AddSubmonoidClass.toAddMemClass
add_comm
add_zero
mk_eq_mk_iff
AddCon.symm
AddCon.add
AddCon.refl
zero_rel
mk_eq_mk_iff πŸ“–mathematicalβ€”DFunLike.coe
AddCon
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddSubmonoid.add
AddCon.instFunLikeForallProp
r
β€”AddOreLocalization.oreSub_eq_iff
r_iff_oreEqv_r
mk_eq_mk_iff' πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”mk_eq_mk_iff
r_iff_exists
add_left_cancel_iff
IsCancelAdd.toIsLeftCancelAdd
Zero.instNonempty
mk_left_injective πŸ“–mathematicalβ€”AddLocalizationβ€”mk_eq_mk_iff
r_iff_exists
IsCancelAdd.toIsLeftCancelAdd
Zero.instNonempty
mk_nsmul πŸ“–mathematicalβ€”AddLocalization
AddMonoid.toNatSMul
AddOreLocalization.instAddMonoid
AddCommMonoid.toAddMonoid
AddOreLocalization.addOreSetComm
AddSubmonoid
AddMonoid.toAddZeroClass
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoidClass.nSMul
AddSubmonoid.instAddSubmonoidClass
β€”AddSubmonoid.instAddSubmonoidClass
zero_nsmul
mk_zero
succ_nsmul
mk_add
mk_self πŸ“–mathematicalβ€”AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddLocalization
AddOreLocalization.instZero
AddOreLocalization.addOreSetComm
AddMonoid.toAddAction
AddZero.toZero
AddZeroClass.toAddZero
β€”mk_zero
mk_eq_mk_iff
zero_rel
mk_self_mk πŸ“–mathematicalAddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddLocalization
AddOreLocalization.instZero
AddOreLocalization.addOreSetComm
AddMonoid.toAddAction
AddZero.toZero
AddZeroClass.toAddZero
β€”mk_self
mk_sum πŸ“–mathematicalβ€”Finset.sum
AddLocalization
AddOreLocalization.instAddCommMonoid
AddOreLocalization.addOreSetComm
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.toAddCommMonoid
β€”Finset.induction_on
mk_zero
Finset.sum_insert
mk_add
mk_zero πŸ“–mathematicalβ€”AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.zero
AddLocalization
AddOreLocalization.instZero
AddOreLocalization.addOreSetComm
AddMonoid.toAddAction
β€”AddOreLocalization.zero_def
mk_zero_eq_addMonoidOf_mk πŸ“–mathematicalβ€”AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.zero
DFunLike.coe
AddSubmonoid.LocalizationMap
AddLocalization
AddOreLocalization.instAddCommMonoid
AddOreLocalization.addOreSetComm
AddSubmonoid.LocalizationMap.instFunLike
addMonoidOf
β€”β€”
ndrec_mk πŸ“–β€”AddLocalization
DFunLike.coe
AddCon
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddSubmonoid.add
AddCon.instFunLikeForallProp
r
mk_eq_mk_iff
β€”β€”mk_eq_mk_iff
r_eq_r' πŸ“–mathematicalβ€”r
r'
β€”le_antisymm
sInf_le
add_zero
zero_add
le_sInf
AddCon.trans
AddCon.add
AddCon.refl
AddSubmonoidClass.toAddMemClass
AddSubmonoid.instAddSubmonoidClass
add_assoc
add_comm
AddCon.symm
r_iff_exists πŸ“–mathematicalβ€”DFunLike.coe
AddCon
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddSubmonoid.add
AddCon.instFunLikeForallProp
r
β€”r_eq_r'
r_iff_oreEqv_r πŸ“–mathematicalβ€”DFunLike.coe
AddCon
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddSubmonoid.add
AddCon.instFunLikeForallProp
r
AddOreLocalization.oreEqv
AddOreLocalization.addOreSetComm
AddMonoid.toAddAction
β€”r_iff_exists
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
AddSubmonoid.instAddSubmonoidClass
add_assoc
add_right_comm
add_comm
r_of_eq πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
DFunLike.coe
AddCon
Prod.instAdd
AddSubmonoid.add
AddCon.instFunLikeForallProp
r
β€”r_iff_exists
zero_rel πŸ“–mathematicalβ€”DFunLike.coe
AddCon
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddSubmonoid.add
AddCon.instFunLikeForallProp
r
Prod.instZero
AddZero.toZero
AddSubmonoid.zero
β€”β€”

AddMonoidHom

Definitions

NameCategoryTheorems
toLocalizationMap πŸ“–CompOpβ€”

AddSubmonoid

Definitions

NameCategoryTheorems
IsLocalizationMap πŸ“–CompData
7 mathmath: isLocalizationMap_iff, isLocalizationMap_of_addGroup, isLocalizationMap_iff_bijective, isLocalizationMap_nat_int, isLocalizationMap_top_nat_int, isLocalizationMap_id, LocalizationMap.isLocalizationMap
LocalizationMap πŸ“–CompData
46 mathmath: LocalizationMap.mk'_spec, LocalizationMap.mk'_eq_iff_eq_add, LocalizationMap.symm_comp_ofAddEquivOfLocalizations_apply, LocalizationMap.addEquivOfAddEquiv_eq, LocalizationMap.surjβ‚‚, LocalizationMap.map_add_right, LocalizationMap.eq_iff_exists, LocalizationMap.injective_iff, LocalizationMap.mk'_spec', LocalizationMap.ofAddEquivOfLocalizations_eq_iff_eq, LocalizationMap.mk'_eq_iff_eq', LocalizationMap.mk'_zero, LocalizationMap.map_spec, LocalizationMap.of_addEquivOfAddEquiv_apply, LocalizationMap.map_add_left, LocalizationMap.symm_comp_ofAddEquivOfLocalizations_apply', LocalizationMap.lift_injective_iff, AddLocalization.mk_zero_eq_addMonoidOf_mk, LocalizationMap.sec_spec', LocalizationMap.map_eq, LocalizationMap.ofAddEquivOfDom_apply, LocalizationMap.add_mk'_zero_eq_mk', LocalizationMap.ofAddEquivOfLocalizations_apply, LocalizationMap.surj, LocalizationMap.lift_eq, LocalizationMap.add_mk'_eq_mk'_of_add, mem_subPairs, LocalizationMap.addEquivOfLocalizations_right_inv_apply, LocalizationMap.toAddMonoidHom_injective, LocalizationMap.mk'_add_eq_mk'_of_add, LocalizationMap.eq_mk'_iff_add_eq, LocalizationMap.toAddMonoidHom_apply, LocalizationMap.ext_iff, LocalizationMap.mk'_add_cancel_left, LocalizationMap.ofAddEquivOfDom_comp_symm, AddLocalization.addEquivOfQuotient_addMonoidOf, AddLocalization.addEquivOfQuotient_symm_addMonoidOf, LocalizationMap.ofAddEquivOfDom_comp, LocalizationMap.instAddMonoidHomClass, LocalizationMap.eq_iff_eq, LocalizationMap.sec_spec, LocalizationMap.map_isAddRegular, LocalizationMap.mk'_eq_iff_eq, LocalizationMap.mk'_add_cancel_right, LocalizationMap.map_addUnits, LocalizationMap.top_injective_iff

Theorems

NameKindAssumesProvesValidatesDepends On
isLocalizationMap_id πŸ“–mathematicalβ€”IsLocalizationMap
AddCommGroup.toAddCommMonoid
β€”isLocalizationMap_iff_bijective
AddHom.addHomClass
Function.bijective_id
isLocalizationMap_iff πŸ“–mathematicalβ€”IsLocalizationMap
IsAddUnit
AddCommMonoid.toAddMonoid
AddSubmonoid
AddMonoid.toAddZeroClass
SetLike.instMembership
instSetLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”
isLocalizationMap_iff_bijective πŸ“–mathematicalβ€”IsLocalizationMap
AddCommGroup.toAddCommMonoid
DFunLike.coe
Function.Bijective
β€”IsLocalizationMap.exists_of_eq
add_left_cancel
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsLocalizationMap.surj
sub_eq_add_neg
map_add
add_assoc
add_neg_cancel
IsLocalizationMap.map_zero
add_zero
IsAddUnit.map
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
AddGroup.isAddUnit
AddEquiv.map_zero
Zero.instNonempty
isLocalizationMap_nat_int πŸ“–mathematicalβ€”IsLocalizationMap
Nat.instAddCommMonoid
Int.instAddCommMonoid
β€”isLocalizationMap_of_addGroup
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
instAddSubmonoidClass
bot_or_exists_ne_zero
nsmul_mem
isLocalizationMap_of_addGroup πŸ“–mathematicalAddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
instSetLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
IsLocalizationMap
AddCommGroup.toAddCommMonoid
β€”AddGroup.isAddUnit
sub_add_cancel
Zero.instNonempty
isLocalizationMap_top_nat_int πŸ“–mathematicalβ€”IsLocalizationMap
Nat.instAddCommMonoid
Int.instAddCommMonoid
Top.top
AddSubmonoid
AddMonoid.toAddZeroClass
Nat.instAddMonoid
instTop
β€”isLocalizationMap_nat_int
top_ne_bot
instNontrivial
Nat.instNontrivial

AddSubmonoid.IsLocalizationMap

Theorems

NameKindAssumesProvesValidatesDepends On
addEquiv_comp πŸ“–mathematicalAddSubmonoid.IsLocalizationMapDFunLike.coe
EquivLike.toFunLike
β€”IsAddUnit.map
AddEquivClass.instAddMonoidHomClass
map_addUnits
surj
AddEquiv.injective
map_add
AddMonoidHomClass.toAddHomClass
AddEquiv.instAddEquivClass
AddEquivClass.coe_symm_apply_apply
exists_of_eq
EquivLike.injective
exists_of_eq πŸ“–mathematicalAddSubmonoid.IsLocalizationMapAddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”β€”
map_addUnits πŸ“–mathematicalAddSubmonoid.IsLocalizationMapIsAddUnit
AddCommMonoid.toAddMonoid
AddSubmonoid
AddMonoid.toAddZeroClass
SetLike.instMembership
AddSubmonoid.instSetLike
β€”β€”
map_zero πŸ“–mathematicalAddSubmonoid.IsLocalizationMap
DFunLike.coe
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”map_addUnits
add_zero
map_add
surj πŸ“–mathematicalAddSubmonoid.IsLocalizationMapAddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”β€”

AddSubmonoid.LocalizationMap

Definitions

NameCategoryTheorems
instFunLike πŸ“–CompOp
47 mathmath: mk'_spec, mk'_eq_iff_eq_add, symm_comp_ofAddEquivOfLocalizations_apply, addEquivOfAddEquiv_eq, surjβ‚‚, map_add_right, eq_iff_exists, injective_iff, mk'_spec', ofAddEquivOfLocalizations_eq_iff_eq, mk'_eq_iff_eq', mk'_zero, map_spec, of_addEquivOfAddEquiv_apply, map_add_left, symm_comp_ofAddEquivOfLocalizations_apply', lift_injective_iff, AwayMap.lift_comp, AddLocalization.mk_zero_eq_addMonoidOf_mk, sec_spec', map_eq, ofAddEquivOfDom_apply, add_mk'_zero_eq_mk', ofAddEquivOfLocalizations_apply, surj, lift_eq, add_mk'_eq_mk'_of_add, AddSubmonoid.mem_subPairs, addEquivOfLocalizations_right_inv_apply, mk'_add_eq_mk'_of_add, eq_mk'_iff_add_eq, toAddMonoidHom_apply, ext_iff, mk'_add_cancel_left, ofAddEquivOfDom_comp_symm, AddLocalization.addEquivOfQuotient_addMonoidOf, AddLocalization.addEquivOfQuotient_symm_addMonoidOf, ofAddEquivOfDom_comp, instAddMonoidHomClass, eq_iff_eq, sec_spec, map_isAddRegular, mk'_eq_iff_eq, mk'_add_cancel_right, map_addUnits, top_injective_iff, AwayMap.lift_eq
mk' πŸ“–CompOp
40 mathmath: mk'_spec, mk'_eq_iff_eq_add, mk'_eq_of_eq', AddLocalization.liftOn_mk', addEquivOfAddEquiv_mk', mk'_spec', mk'_eq_iff_eq', mk'_zero, mk'_add, lift_eq_iff, mk'_surjective, mk'_self', lift_mk'_spec, mk'_eq_of_eq, AddLocalization.addEquivOfQuotient_mk', AddLocalization.mk_eq_addMonoidOf_mk', mk'_eq_iff_mk'_eq, add_mk'_zero_eq_mk', add_mk'_eq_mk'_of_add, AddLocalization.addEquivOfQuotient_mk, eq', AddLocalization.addEquivOfQuotient_symm_mk', mk'_add_eq_mk'_of_add, eq_mk'_iff_add_eq, mk'_add_cancel_left, AddLocalization.liftOnβ‚‚_mk', exists_of_sec_mk', AddLocalization.addEquivOfQuotient_symm_mk, AddLocalization.Away.mk_eq_addMonoidOf_mk', mk'_self, eq, lift_localizationMap_mk', mk'_cancel, AddLocalization.mk_eq_addMonoidOf_mk'_apply, mk'_eq_of_same, mk'_eq_iff_eq, mk'_add_cancel_right, lift_mk', mk'_sec, map_mk'
sec πŸ“–CompOp
13 mathmath: map_add_right, map_spec, map_add_left, lift_apply, sec_spec', lift_spec_add, lift_spec, exists_of_sec_mk', Algebra.GrothendieckAddGroup.lift_apply, lift_add_right, sec_spec, mk'_sec, lift_add_left
toAddHom πŸ“–CompOp
1 mathmath: isLocalizationMap
toAddMonoidHom πŸ“–CompOp
18 mathmath: ofAddEquivOfLocalizations_eq, addEquivOfLocalizations_symm_apply, isAddUnit_comp, lift_of_comp, AddLocalization.addEquivOfQuotient_apply, map_comp, toAddMonoidHom_injective, lift_comp, lift_comp_lift, lift_comp_lift_eq, toAddMonoidHom_apply, ofAddEquivOfLocalizations_comp, ofAddEquivOfDom_eq, lift_id, lift_localizationMap_mk', of_addEquivOfAddEquiv, lift_left_inverse, addEquivOfLocalizations_apply

Theorems

NameKindAssumesProvesValidatesDepends On
add_mk'_eq_mk'_of_add πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
mk'
β€”mk'_zero
mk'_add
zero_add
add_mk'_zero_eq_mk' πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
mk'
AddZero.toZero
β€”add_mk'_eq_mk'_of_add
add_zero
add_neg πŸ“–mathematicalIsAddUnit
AddCommMonoid.toAddMonoid
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddZero.toAdd
AddUnits.val
AddUnits
AddUnits.instNeg
AddSubmonoid.toAddMonoid
AddUnits.instAddZeroClass
IsAddUnit.liftRight
AddMonoidHom.restrict
AddSubmonoid.instAddSubmonoidClass
β€”AddSubmonoid.instAddSubmonoidClass
add_neg_right
add_assoc
add_comm
add_neg_left
AddMonoidHom.map_add
add_neg_left πŸ“–mathematicalIsAddUnit
AddCommMonoid.toAddMonoid
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddZero.toAdd
AddUnits.val
AddUnits
AddUnits.instNeg
AddSubmonoid.toAddMonoid
AddUnits.instAddZeroClass
IsAddUnit.liftRight
AddMonoidHom.restrict
AddSubmonoid.instAddSubmonoidClass
β€”AddSubmonoid.instAddSubmonoidClass
add_comm
AddUnits.neg_add_eq_iff_eq_add
add_neg_right πŸ“–mathematicalIsAddUnit
AddCommMonoid.toAddMonoid
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddZero.toAdd
AddUnits.val
AddUnits
AddUnits.instNeg
AddSubmonoid.toAddMonoid
AddUnits.instAddZeroClass
IsAddUnit.liftRight
AddMonoidHom.restrict
AddSubmonoid.instAddSubmonoidClass
β€”AddSubmonoid.instAddSubmonoidClass
add_neg_left
add_comm
epic_of_localizationMap πŸ“–β€”AddMonoidHom.comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
toAddMonoidHom
β€”β€”AddMonoidHom.ext
surj
IsAddUnit.map
AddMonoidHom.instAddMonoidHomClass
map_addUnits
AddMonoidHom.map_add
eq πŸ“–mathematicalβ€”mk'
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”mk'_eq_iff_eq
eq_iff_exists
eq' πŸ“–mathematicalβ€”mk'
DFunLike.coe
AddCon
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddSubmonoid.add
AddCon.instFunLikeForallProp
AddLocalization.r
β€”eq
AddLocalization.r_iff_exists
eq_iff_eq πŸ“–mathematicalβ€”DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
β€”eq_iff_exists
eq_iff_exists πŸ“–mathematicalβ€”DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”AddSubmonoid.IsLocalizationMap.exists_of_eq
isLocalizationMap
map_addUnits
map_add
AddMonoidHomClass.toAddHomClass
instAddMonoidHomClass
eq_mk'_iff_add_eq πŸ“–mathematicalβ€”mk'
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”mk'_spec
map_addUnits
mk'.eq_1
AddSubmonoid.instAddSubmonoidClass
add_neg_right
exists_of_eq πŸ“–mathematicalDFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”AddSubmonoid.IsLocalizationMap.exists_of_eq
isLocalizationMap
exists_of_sec_mk' πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
sec
mk'
β€”eq_iff_exists
mk'_eq_iff_eq
mk'_sec
ext πŸ“–β€”DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
β€”ext
injective_iff πŸ“–mathematicalβ€”DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
IsAddRegular
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”AddCommute.isAddRegular_iff
AddCommute.all
eq_iff_exists
forallβ‚‚_swap
instAddMonoidHomClass πŸ“–mathematicalβ€”AddMonoidHomClass
AddSubmonoid.LocalizationMap
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
β€”AddHom.map_add
AddMonoidHom.map_zero
instIsCancelAddLocalization πŸ“–mathematicalβ€”IsCancelAdd
AddLocalization
AddOreLocalization.instAdd
AddCommMonoid.toAddMonoid
AddOreLocalization.addOreSetComm
β€”isCancelAdd
instNontrivialLocalizationOfIsCancelAdd πŸ“–mathematicalβ€”Nontrivial
AddLocalization
β€”Function.Injective.nontrivial
injective_iff
IsAddRegular.all
isAddUnit_comp πŸ“–mathematicalβ€”IsAddUnit
AddCommMonoid.toAddMonoid
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
AddMonoidHom.comp
toAddMonoidHom
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”AddSubmonoid.instAddSubmonoidClass
map_addUnits
IsAddUnit.coe_liftRight
isCancelAdd πŸ“–mathematicalβ€”IsCancelAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”isCancelAdd_iff_forall_isAddRegular
AddCommute.isAddRegular_iff
AddCommute.all
AddCommute.isAddRightRegular_iff
surj
IsAddRightRegular.of_add
IsAddRegular.right
map_isAddRegular
isLocalizationMap πŸ“–mathematicalβ€”AddSubmonoid.IsLocalizationMap
AddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
toAddHom
β€”β€”
map_addUnits πŸ“–mathematicalβ€”IsAddUnit
AddCommMonoid.toAddMonoid
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
AddSubmonoid
AddMonoid.toAddZeroClass
SetLike.instMembership
AddSubmonoid.instSetLike
β€”AddSubmonoid.IsLocalizationMap.map_addUnits
isLocalizationMap
map_isAddRegular πŸ“–mathematicalIsAddRegular
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
β€”AddCommute.isAddRegular_iff
AddCommute.all
surj
map_addUnits
AddSubmonoid.coe_add
map_add
AddMonoidHomClass.toAddHomClass
instAddMonoidHomClass
add_assoc
add_right_comm
eq_iff_exists
IsAddRegular.left
add_left_comm
map_left_cancel πŸ“–β€”DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”β€”map_right_cancel
add_comm
map_right_cancel πŸ“–β€”DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”β€”map_addUnits
map_add
AddMonoidHomClass.toAddHomClass
instAddMonoidHomClass
mk'_add πŸ“–mathematicalβ€”mk'
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.add
β€”AddSubmonoid.instAddSubmonoidClass
map_addUnits
add_neg_left
map_add
AddMonoidHomClass.toAddHomClass
instAddMonoidHomClass
AddMonoidHom.instAddMonoidHomClass
add_add_add_comm
add_left_comm
IsAddUnit.add_val_neg
add_zero
mk'_add_cancel_left πŸ“–mathematicalβ€”mk'
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
β€”add_comm
mk'_add_cancel_right
mk'_add_cancel_right πŸ“–mathematicalβ€”mk'
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
β€”add_mk'_zero_eq_mk'
map_add
AddMonoidHomClass.toAddHomClass
instAddMonoidHomClass
add_assoc
mk'_self'
add_zero
mk'_add_eq_mk'_of_add πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
mk'
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
β€”add_comm
add_mk'_eq_mk'_of_add
mk'_cancel πŸ“–mathematicalβ€”mk'
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.add
β€”mk'_eq_of_eq'
AddSubmonoid.coe_add
add_comm
add_assoc
mk'_eq_iff_eq πŸ“–mathematicalβ€”mk'
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”map_add
AddMonoidHomClass.toAddHomClass
instAddMonoidHomClass
mk'_eq_iff_eq_add
add_assoc
mk'_spec'
add_comm
map_addUnits
mk'.eq_1
AddSubmonoid.instAddSubmonoidClass
add_neg_right
toAddMonoidHom_apply
mk'_eq_iff_eq' πŸ“–mathematicalβ€”mk'
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”mk'_eq_iff_eq
add_comm
mk'_eq_iff_eq_add πŸ“–mathematicalβ€”mk'
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”eq_mk'_iff_add_eq
mk'_eq_iff_mk'_eq πŸ“–mathematicalβ€”mk'β€”eq'
mk'_eq_of_eq πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
mk'β€”mk'_eq_iff_eq
mk'_eq_of_eq' πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
mk'β€”mk'_eq_of_eq
add_comm
mk'_eq_of_same πŸ“–mathematicalβ€”mk'
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”mk'_eq_iff_eq'
map_add
AddMonoidHomClass.toAddHomClass
instAddMonoidHomClass
eq_iff_exists
map_addUnits
mk'_sec πŸ“–mathematicalβ€”mk'
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
sec
β€”map_addUnits
sec_spec
AddSubmonoid.instAddSubmonoidClass
add_neg_left
add_comm
mk'_self πŸ“–mathematicalAddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
mk'
AddZero.toZero
AddZeroClass.toAddZero
β€”mk'_self'
mk'_self' πŸ“–mathematicalβ€”mk'
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddZero.toZero
AddZeroClass.toAddZero
β€”map_addUnits
AddSubmonoid.instAddSubmonoidClass
add_neg_left
add_zero
mk'_spec πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
mk'
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”map_addUnits
add_assoc
add_comm
AddSubmonoid.instAddSubmonoidClass
add_neg_left
mk'_spec' πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
mk'
β€”add_comm
mk'_spec
mk'_surjective πŸ“–mathematicalβ€”mk'β€”mk'_sec
mk'_zero πŸ“–mathematicalβ€”mk'
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.zero
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
β€”map_addUnits
mk'.eq_1
map_zero
AddMonoidHomClass.toZeroHomClass
AddMonoidHom.instAddMonoidHomClass
add_zero
neg_inj πŸ“–β€”IsAddUnit
AddCommMonoid.toAddMonoid
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddUnits
AddUnits.instNeg
AddSubmonoid.toAddMonoid
AddUnits.instAddZeroClass
IsAddUnit.liftRight
AddMonoidHom.restrict
AddSubmonoid.instAddSubmonoidClass
β€”β€”AddSubmonoid.instAddSubmonoidClass
add_zero
add_neg_left
AddUnits.neg_add
neg_unique πŸ“–mathematicalIsAddUnit
AddCommMonoid.toAddMonoid
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddZero.toAdd
AddZero.toZero
AddUnits.val
AddUnits
AddUnits.instNeg
AddSubmonoid.toAddMonoid
AddUnits.instAddZeroClass
IsAddUnit.liftRight
AddMonoidHom.restrict
AddSubmonoid.instAddSubmonoidClass
β€”AddSubmonoid.instAddSubmonoidClass
zero_add
AddUnits.val_add
add_neg_left
sec_spec πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
sec
β€”surj
sec_spec' πŸ“–mathematicalβ€”DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
sec
AddZero.toAdd
AddZeroClass.toAddZero
β€”add_comm
sec_spec
subsingleton_of_subsingleton πŸ“–β€”β€”β€”β€”mk'_surjective
instSubsingletonSubtype_mathlib
surj πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”AddSubmonoid.IsLocalizationMap.surj
isLocalizationMap
surjβ‚‚ πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
AddSubmonoid.LocalizationMap
instFunLike
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”surj
map_add
AddMonoidHomClass.toAddHomClass
instAddMonoidHomClass
add_assoc
add_left_comm
toAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
toAddMonoidHom
AddSubmonoid.LocalizationMap
instFunLike
β€”β€”
toAddMonoidHom_injective πŸ“–mathematicalβ€”AddSubmonoid.LocalizationMap
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
toAddMonoidHom
β€”AddHom.ext
isLocalizationMap
top_injective_iff πŸ“–mathematicalβ€”DFunLike.coe
AddSubmonoid.LocalizationMap
Top.top
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid.instTop
instFunLike
IsCancelAdd
AddZero.toAdd
AddZeroClass.toAddZero
β€”injective_iff
AddSubmonoid.mem_top
isCancelAdd_iff_forall_isAddRegular

Localization

Definitions

NameCategoryTheorems
decidableEq πŸ“–CompOpβ€”
liftOn πŸ“–CompOp
4 mathmath: liftOn_zero, liftOn_mk, RatFunc.liftOn_def, liftOn_mk'
liftOnβ‚‚ πŸ“–CompOp
2 mathmath: liftOnβ‚‚_mk', liftOnβ‚‚_mk
mk πŸ“–CompOpβ€”
mkHom πŸ“–CompOp
2 mathmath: mkHom_surjective, mkHom_apply
monoidOf πŸ“–CompOp
13 mathmath: mk_eq_monoidOf_mk', mulEquivOfQuotient_symm_monoidOf, toLocalizationMap_eq_monoidOf, liftOnβ‚‚_mk', mk_one_eq_monoidOf_mk, mk_eq_monoidOf_mk'_apply, mulEquivOfQuotient_mk', monoidOf_eq_algebraMap, mulEquivOfQuotient_monoidOf, mulEquivOfQuotient_apply, Algebra.GrothendieckGroup.lift_apply, liftOn_mk', mulEquivOfQuotient_symm_mk'
r πŸ“–CompOp
7 mathmath: one_rel, r_eq_r', r_of_eq, r_iff_exists, Submonoid.LocalizationMap.eq', r_iff_oreEqv_r, mk_eq_mk_iff
r' πŸ“–CompOp
1 mathmath: r_eq_r'
rec πŸ“–CompOpβ€”
recOnSubsingletonβ‚‚ πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ind πŸ“–β€”Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
β€”β€”mk_eq_mk_iff
induction_on πŸ“–β€”Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
β€”β€”ind
induction_onβ‚‚ πŸ“–β€”Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
β€”β€”induction_on
induction_on₃ πŸ“–β€”Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
β€”β€”induction_onβ‚‚
induction_on
instIsMulTorsionFree πŸ“–mathematicalβ€”IsMulTorsionFree
Localization
OreLocalization.instMonoid
CommMonoid.toMonoid
OreLocalization.oreSetComm
β€”Submonoid.instSubmonoidClass
mk_pow
pow_left_injective
pow_zero
mul_pow
pow_succ
mul_assoc
instSMulCommClassOfIsScalarTower πŸ“–mathematicalβ€”SMulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
CommMonoid.toMonoid
MulAction.toSemigroupAction
Monoid.toMulAction
β€”one_smul
smul_assoc
SMulCommClass.smul_comm
smulCommClass_self
liftOn_mk πŸ“–mathematicalβ€”liftOnβ€”β€”
liftOn_mk' πŸ“–mathematicalβ€”liftOn
Submonoid.LocalizationMap.mk'
Localization
OreLocalization.instCommMonoid
OreLocalization.oreSetComm
monoidOf
β€”mk_eq_monoidOf_mk'
liftOnβ‚‚_mk πŸ“–mathematicalβ€”liftOnβ‚‚β€”β€”
liftOnβ‚‚_mk' πŸ“–mathematicalβ€”liftOnβ‚‚
Submonoid.LocalizationMap.mk'
Localization
OreLocalization.instCommMonoid
OreLocalization.oreSetComm
monoidOf
β€”mk_eq_monoidOf_mk'
mkHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
Localization
MulOneClass.toMulOne
Prod.instMulOneClass
Submonoid.toMulOneClass
OreLocalization.instMonoid
OreLocalization.oreSetComm
MonoidHom.instFunLike
mkHom
β€”β€”
mkHom_surjective πŸ“–mathematicalβ€”Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
Localization
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Prod.instMulOneClass
Submonoid.toMulOneClass
OreLocalization.instMonoid
OreLocalization.oreSetComm
MonoidHom.instFunLike
mkHom
β€”β€”
mk_eq_mk_iff πŸ“–mathematicalβ€”DFunLike.coe
Con
Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
Submonoid.mul
Con.instFunLikeForallProp
r
β€”β€”
mk_eq_mk_iff' πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”IsCancelMul.toIsLeftCancelMul
One.instNonempty
mk_eq_monoidOf_mk' πŸ“–mathematicalβ€”Submonoid.LocalizationMap.mk'
Localization
OreLocalization.instCommMonoid
OreLocalization.oreSetComm
monoidOf
β€”mk_eq_monoidOf_mk'_apply
mk_eq_monoidOf_mk'_apply πŸ“–mathematicalβ€”Submonoid.LocalizationMap.mk'
Localization
OreLocalization.instCommMonoid
OreLocalization.oreSetComm
monoidOf
β€”Submonoid.LocalizationMap.map_units
Submonoid.instSubmonoidClass
Submonoid.LocalizationMap.mul_inv_right
mk_mul
SubmonoidClass.toMulMemClass
mul_comm
mul_one
mk_eq_mk_iff
Con.symm
Con.mul
Con.refl
one_rel
mk_left_injective πŸ“–mathematicalβ€”Localizationβ€”IsCancelMul.toIsLeftCancelMul
One.instNonempty
mk_mul πŸ“–mathematicalβ€”Localization
OreLocalization.instMul
CommMonoid.toMonoid
OreLocalization.oreSetComm
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Submonoid
SetLike.instMembership
Submonoid.instSetLike
Submonoid.mul
β€”SubmonoidClass.toMulMemClass
Submonoid.instSubmonoidClass
OreLocalization.oreDiv_mul_oreDiv
mul_comm
mk_one πŸ“–mathematicalβ€”MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
Submonoid.one
Localization
OreLocalization.instOne
OreLocalization.oreSetComm
Monoid.toMulAction
β€”OreLocalization.one_def
mk_one_eq_monoidOf_mk πŸ“–mathematicalβ€”Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
Submonoid.one
DFunLike.coe
Submonoid.LocalizationMap
Localization
OreLocalization.instCommMonoid
OreLocalization.oreSetComm
Submonoid.LocalizationMap.instFunLike
monoidOf
β€”β€”
mk_pow πŸ“–mathematicalβ€”Localization
Monoid.toNatPow
OreLocalization.instMonoid
CommMonoid.toMonoid
OreLocalization.oreSetComm
Submonoid
Monoid.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
SubmonoidClass.nPow
Submonoid.instSubmonoidClass
β€”Submonoid.instSubmonoidClass
pow_zero
pow_succ
mk_prod πŸ“–mathematicalβ€”Finset.prod
Localization
OreLocalization.instCommMonoid
OreLocalization.oreSetComm
Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
Submonoid.toCommMonoid
β€”Finset.induction_on
mk_one
Finset.prod_insert
mk_mul
mk_self πŸ“–mathematicalβ€”Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
Localization
OreLocalization.instOne
OreLocalization.oreSetComm
Monoid.toMulAction
MulOne.toOne
MulOneClass.toMulOne
β€”mk_one
mk_eq_mk_iff
one_rel
mk_self_mk πŸ“–mathematicalSubmonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
Localization
OreLocalization.instOne
OreLocalization.oreSetComm
Monoid.toMulAction
MulOne.toOne
MulOneClass.toMulOne
β€”mk_self
ndrec_mk πŸ“–β€”Localization
DFunLike.coe
Con
Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
Submonoid.mul
Con.instFunLikeForallProp
r
mk_eq_mk_iff
β€”β€”mk_eq_mk_iff
one_rel πŸ“–mathematicalβ€”DFunLike.coe
Con
Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
Submonoid.mul
Con.instFunLikeForallProp
r
Prod.instOne
MulOne.toOne
Submonoid.one
β€”β€”
r_eq_r' πŸ“–mathematicalβ€”r
r'
β€”le_antisymm
sInf_le
mul_one
one_mul
le_sInf
Con.trans
Con.mul
Con.refl
SubmonoidClass.toMulMemClass
Submonoid.instSubmonoidClass
mul_assoc
mul_comm
Con.symm
r_iff_exists πŸ“–mathematicalβ€”DFunLike.coe
Con
Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
Submonoid.mul
Con.instFunLikeForallProp
r
β€”r_eq_r'
r_iff_oreEqv_r πŸ“–mathematicalβ€”DFunLike.coe
Con
Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
Submonoid.mul
Con.instFunLikeForallProp
r
OreLocalization.oreEqv
OreLocalization.oreSetComm
Monoid.toMulAction
β€”MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
Submonoid.instSubmonoidClass
mul_assoc
mul_right_comm
mul_comm
r_of_eq πŸ“–mathematicalMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
DFunLike.coe
Con
Prod.instMul
Submonoid.mul
Con.instFunLikeForallProp
r
β€”r_iff_exists
smul_mk πŸ“–mathematicalβ€”Localization
OreLocalization.instSMulOfIsScalarTower
CommMonoid.toMonoid
OreLocalization.oreSetComm
Monoid.toMulAction
β€”OreLocalization.smul_one_oreDiv_one_smul
OreLocalization.oreDiv_smul_oreDiv
smul_assoc
one_smul
mul_one

MonoidHom

Definitions

NameCategoryTheorems
toLocalizationMap πŸ“–CompOpβ€”

OreLocalization

Definitions

NameCategoryTheorems
equivMonoidLocalization πŸ“–CompOpβ€”
localizationMap πŸ“–CompOpβ€”

Submonoid

Definitions

NameCategoryTheorems
IsLocalizationMap πŸ“–CompData
7 mathmath: LocalizationMap.isLocalizationMap, IsLocalization'.toIsLocalizationMap, isLocalizationMap_iff, isLocalizationMap_iff_bijective, isLocalizationMap_id, isLocalizationMap_of_group, isLocalization_iff_isLocalizationMap
LocalizationMap πŸ“–CompData
55 mathmath: LocalizationMap.injective_iff, LocalizationMap.mul_mk'_eq_mk'_of_mul, Localization.mulEquivOfQuotient_symm_monoidOf, LocalizationMap.map_spec, LocalizationMap.ofMulEquivOfDom_comp_symm, LocalizationMap.mk'_one, LocalizationMap.top_injective_iff, Localization.mk_one_eq_monoidOf_mk, LocalizationMap.mk'_eq_iff_eq, LocalizationMap.nonZeroDivisors_le_comap, LocalizationMap.eq_iff_exists, IsLocalization.toLocalizationMap_apply, LocalizationMap.mk'_mul_cancel_left, LocalizationMap.map_eq_zero_iff, LocalizationMap.ofMulEquivOfDom_comp, LocalizationMap.ext_iff, LocalizationMap.instMonoidHomClass, LocalizationMap.map_nonZeroDivisors_le, IsLocalization.coe_toLocalizationMap, Localization.monoidOf_eq_algebraMap, LocalizationMap.mk'_eq_iff_eq', LocalizationMap.sec_spec', LocalizationMap.mk'_mul_eq_mk'_of_mul, LocalizationMap.map_zero, instMonoidWithZeroHomClassLocalizationMap, LocalizationMap.of_mulEquivOfMulEquiv_apply, LocalizationMap.map_eq, mem_divPairs, LocalizationMap.mk'_mul_cancel_right, LocalizationMap.mk'_spec', LocalizationMap.ofMulEquivOfLocalizations_apply, Localization.mulEquivOfQuotient_monoidOf, LocalizationMap.mul_mk'_one_eq_mk', LocalizationMap.ofMulEquivOfDom_apply, LocalizationMap.ofMulEquivOfLocalizations_eq_iff_eq, LocalizationMap.map_mul_left, LocalizationMap.lift_eq, LocalizationMap.eq_mk'_iff_mul_eq, LocalizationMap.map_units, LocalizationMap.mulEquivOfMulEquiv_eq, LocalizationMap.symm_comp_ofMulEquivOfLocalizations_apply, LocalizationMap.surj, LocalizationMap.mulEquivOfLocalizations_right_inv_apply, LocalizationMap.mk'_eq_iff_eq_mul, LocalizationMap.toMonoidHom_apply, LocalizationMap.symm_comp_ofMulEquivOfLocalizations_apply', LocalizationMap.lift_injective_iff, LocalizationMap.sec_spec, LocalizationMap.map_isRegular, LocalizationMap.mk'_spec, LocalizationMap.map_mul_right, LocalizationMap.sec_zero_fst, LocalizationMap.toMonoidHom_injective, LocalizationMap.eq_iff_eq, LocalizationMap.surjβ‚‚

Theorems

NameKindAssumesProvesValidatesDepends On
isLocalizationMap_id πŸ“–mathematicalβ€”IsLocalizationMap
CommGroup.toCommMonoid
β€”isLocalizationMap_iff_bijective
MulHom.mulHomClass
Function.bijective_id
isLocalizationMap_iff πŸ“–mathematicalβ€”IsLocalizationMap
IsUnit
CommMonoid.toMonoid
Submonoid
Monoid.toMulOneClass
SetLike.instMembership
instSetLike
MulOne.toMul
MulOneClass.toMulOne
β€”β€”
isLocalizationMap_iff_bijective πŸ“–mathematicalβ€”IsLocalizationMap
CommGroup.toCommMonoid
DFunLike.coe
Function.Bijective
β€”IsLocalizationMap.exists_of_eq
mul_left_cancel
LeftCancelSemigroup.toIsLeftCancelMul
IsLocalizationMap.surj
div_eq_mul_inv
map_mul
mul_assoc
mul_inv_cancel
IsLocalizationMap.map_one
mul_one
IsUnit.map
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
Group.isUnit
MulEquiv.map_one
One.instNonempty
isLocalizationMap_of_group πŸ“–mathematicalSubmonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
instSetLike
DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
IsLocalizationMap
CommGroup.toCommMonoid
β€”Group.isUnit
div_mul_cancel
One.instNonempty

Submonoid.IsLocalizationMap

Theorems

NameKindAssumesProvesValidatesDepends On
exists_of_eq πŸ“–mathematicalSubmonoid.IsLocalizationMapMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”β€”
map_one πŸ“–mathematicalSubmonoid.IsLocalizationMap
DFunLike.coe
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”map_units
mul_one
map_mul
map_units πŸ“–mathematicalSubmonoid.IsLocalizationMapIsUnit
CommMonoid.toMonoid
Submonoid
Monoid.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
β€”β€”
mulEquiv_comp πŸ“–mathematicalSubmonoid.IsLocalizationMapDFunLike.coe
EquivLike.toFunLike
β€”IsUnit.map
MulEquivClass.instMonoidHomClass
map_units
surj
MulEquiv.injective
map_mul
MonoidHomClass.toMulHomClass
MulEquiv.instMulEquivClass
MulEquivClass.coe_symm_apply_apply
exists_of_eq
EquivLike.injective
surj πŸ“–mathematicalSubmonoid.IsLocalizationMapMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”β€”

Submonoid.LocalizationMap

Definitions

NameCategoryTheorems
instFunLike πŸ“–CompOp
56 mathmath: injective_iff, mul_mk'_eq_mk'_of_mul, Localization.mulEquivOfQuotient_symm_monoidOf, AwayMap.lift_comp, map_spec, ofMulEquivOfDom_comp_symm, mk'_one, top_injective_iff, Localization.mk_one_eq_monoidOf_mk, mk'_eq_iff_eq, nonZeroDivisors_le_comap, AwayMap.lift_eq, eq_iff_exists, IsLocalization.toLocalizationMap_apply, mk'_mul_cancel_left, map_eq_zero_iff, ofMulEquivOfDom_comp, ext_iff, instMonoidHomClass, map_nonZeroDivisors_le, IsLocalization.coe_toLocalizationMap, Localization.monoidOf_eq_algebraMap, mk'_eq_iff_eq', sec_spec', mk'_mul_eq_mk'_of_mul, map_zero, Submonoid.instMonoidWithZeroHomClassLocalizationMap, of_mulEquivOfMulEquiv_apply, map_eq, Submonoid.mem_divPairs, mk'_mul_cancel_right, mk'_spec', ofMulEquivOfLocalizations_apply, Localization.mulEquivOfQuotient_monoidOf, mul_mk'_one_eq_mk', ofMulEquivOfDom_apply, ofMulEquivOfLocalizations_eq_iff_eq, map_mul_left, lift_eq, eq_mk'_iff_mul_eq, map_units, mulEquivOfMulEquiv_eq, symm_comp_ofMulEquivOfLocalizations_apply, surj, mulEquivOfLocalizations_right_inv_apply, mk'_eq_iff_eq_mul, toMonoidHom_apply, symm_comp_ofMulEquivOfLocalizations_apply', lift_injective_iff, sec_spec, map_isRegular, mk'_spec, map_mul_right, sec_zero_fst, eq_iff_eq, surjβ‚‚
mk' πŸ“–CompOp
42 mathmath: Localization.Away.mk_eq_monoidOf_mk', Localization.mk_eq_monoidOf_mk', lift_eq_iff, mul_mk'_eq_mk'_of_mul, mk'_zero, mk'_eq_iff_mk'_eq, mk'_self, lift_localizationMap_mk', mk'_one, Localization.liftOnβ‚‚_mk', mk'_eq_of_eq, mk'_eq_iff_eq, map_mk', Localization.mulEquivOfQuotient_mk, mk'_eq_of_same, Localization.mk_eq_monoidOf_mk'_apply, mk'_mul_cancel_left, mk'_cancel, Localization.mulEquivOfQuotient_mk', lift_mk', exists_of_sec_mk', Localization.mulEquivOfQuotient_symm_mk, mk'_eq_iff_eq', mk'_mul_eq_mk'_of_mul, eq', mk'_mul_cancel_right, mk'_spec', mk'_eq_of_eq', mul_mk'_one_eq_mk', mk'_mul, mulEquivOfMulEquiv_mk', mk'_eq_zero_iff, eq_mk'_iff_mul_eq, lift_mk'_spec, mk'_self', Localization.liftOn_mk', mk'_sec, mk'_surjective, Localization.mulEquivOfQuotient_symm_mk', mk'_eq_iff_eq_mul, mk'_spec, eq
sec πŸ“–CompOp
17 mathmath: lift_spec, lift_mul_right, IsLocalization.lift_spec_mul_add, map_spec, exists_of_sec_mk', IsLocalization.toLocalizationMap_sec, sec_spec', lift_apply, map_mul_left, lift_spec_mul, lift_mul_left, Algebra.GrothendieckGroup.lift_apply, liftβ‚€_apply, mk'_sec, sec_spec, map_mul_right, sec_zero_fst
toMonoidHom πŸ“–CompOp
19 mathmath: lift_comp_lift_eq, mulEquivOfLocalizations_apply, lift_of_comp, ofMulEquivOfLocalizations_comp, lift_localizationMap_mk', isUnit_comp, lift_comp, mulEquivOfLocalizations_symm_apply, IsLocalization.toLocalizationMap_toMonoidHom, of_mulEquivOfMulEquiv, Localization.mulEquivOfQuotient_apply, lift_left_inverse, map_comp, ofMulEquivOfLocalizations_eq, toMonoidHom_apply, ofMulEquivOfDom_eq, lift_comp_lift, toMonoidHom_injective, lift_id
toMulHom πŸ“–CompOp
1 mathmath: isLocalizationMap

Theorems

NameKindAssumesProvesValidatesDepends On
epic_of_localizationMap πŸ“–β€”MonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
toMonoidHom
β€”β€”MonoidHom.ext
surj
IsUnit.map
MonoidHom.instMonoidHomClass
map_units
MonoidHom.map_mul
eq πŸ“–mathematicalβ€”mk'
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”mk'_eq_iff_eq
eq_iff_exists
eq' πŸ“–mathematicalβ€”mk'
DFunLike.coe
Con
Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
Submonoid.mul
Con.instFunLikeForallProp
Localization.r
β€”eq
Localization.r_iff_exists
eq_iff_eq πŸ“–mathematicalβ€”DFunLike.coe
Submonoid.LocalizationMap
instFunLike
β€”eq_iff_exists
eq_iff_exists πŸ“–mathematicalβ€”DFunLike.coe
Submonoid.LocalizationMap
instFunLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”Submonoid.IsLocalizationMap.exists_of_eq
isLocalizationMap
map_units
map_mul
MonoidHomClass.toMulHomClass
instMonoidHomClass
eq_mk'_iff_mul_eq πŸ“–mathematicalβ€”mk'
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”mk'_spec
map_units
mk'.eq_1
Submonoid.instSubmonoidClass
mul_inv_right
exists_of_eq πŸ“–mathematicalDFunLike.coe
Submonoid.LocalizationMap
instFunLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”Submonoid.IsLocalizationMap.exists_of_eq
isLocalizationMap
exists_of_sec_mk' πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
sec
mk'
β€”eq_iff_exists
mk'_eq_iff_eq
mk'_sec
ext πŸ“–β€”DFunLike.coe
Submonoid.LocalizationMap
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
Submonoid.LocalizationMap
instFunLike
β€”ext
injective_iff πŸ“–mathematicalβ€”DFunLike.coe
Submonoid.LocalizationMap
instFunLike
IsRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”Commute.isRegular_iff
Commute.all
forallβ‚‚_swap
instIsCancelMulLocalization πŸ“–mathematicalβ€”IsCancelMul
Localization
OreLocalization.instMul
CommMonoid.toMonoid
OreLocalization.oreSetComm
β€”isCancelMul
instMonoidHomClass πŸ“–mathematicalβ€”MonoidHomClass
Submonoid.LocalizationMap
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
instFunLike
β€”MulHom.map_mul
MonoidHom.map_one
instNontrivialLocalizationOfIsCancelMul πŸ“–mathematicalβ€”Nontrivial
Localization
β€”Function.Injective.nontrivial
injective_iff
IsRegular.all
instSubsingletonLocalization πŸ“–mathematicalβ€”Localizationβ€”subsingleton_of_subsingleton
inv_inj πŸ“–β€”IsUnit
CommMonoid.toMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
Submonoid
SetLike.instMembership
Submonoid.instSetLike
Units
Units.instInv
Submonoid.toMonoid
Units.instMulOneClass
IsUnit.liftRight
MonoidHom.restrict
Submonoid.instSubmonoidClass
β€”β€”Submonoid.instSubmonoidClass
mul_one
mul_inv_left
Units.inv_mul
inv_unique πŸ“–mathematicalIsUnit
CommMonoid.toMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
Submonoid
SetLike.instMembership
Submonoid.instSetLike
MulOne.toMul
MulOne.toOne
Units.val
Units
Units.instInv
Submonoid.toMonoid
Units.instMulOneClass
IsUnit.liftRight
MonoidHom.restrict
Submonoid.instSubmonoidClass
β€”Submonoid.instSubmonoidClass
one_mul
Units.val_mul
mul_inv_left
isCancelMul πŸ“–mathematicalβ€”IsCancelMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”Commute.isRegular_iff
Commute.all
Commute.isRightRegular_iff
surj
IsRightRegular.of_mul
IsRegular.right
map_isRegular
isCancelMul_iff_forall_isRegular
isLocalizationMap πŸ“–mathematicalβ€”Submonoid.IsLocalizationMap
MulHom.toFun
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
toMulHom
β€”β€”
isUnit_comp πŸ“–mathematicalβ€”IsUnit
CommMonoid.toMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
MonoidHom.comp
toMonoidHom
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”Submonoid.instSubmonoidClass
map_units
IsUnit.coe_liftRight
map_isRegular πŸ“–mathematicalIsRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
β€”Commute.isRegular_iff
Commute.all
surj
map_units
Submonoid.coe_mul
map_mul
MonoidHomClass.toMulHomClass
instMonoidHomClass
mul_assoc
mul_right_comm
IsRegular.left
mul_left_comm
map_left_cancel πŸ“–β€”DFunLike.coe
Submonoid.LocalizationMap
instFunLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”β€”map_right_cancel
mul_comm
map_right_cancel πŸ“–β€”DFunLike.coe
Submonoid.LocalizationMap
instFunLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”β€”map_units
map_mul
MonoidHomClass.toMulHomClass
instMonoidHomClass
map_units πŸ“–mathematicalβ€”IsUnit
CommMonoid.toMonoid
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
Submonoid
Monoid.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
β€”Submonoid.IsLocalizationMap.map_units
isLocalizationMap
mk'_cancel πŸ“–mathematicalβ€”mk'
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
Submonoid.mul
β€”mk'_eq_of_eq'
Submonoid.coe_mul
mul_comm
mul_assoc
mk'_eq_iff_eq πŸ“–mathematicalβ€”mk'
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”map_mul
MonoidHomClass.toMulHomClass
instMonoidHomClass
mk'_eq_iff_eq_mul
mul_assoc
mk'_spec'
mul_comm
map_units
mk'.eq_1
Submonoid.instSubmonoidClass
mul_inv_right
toMonoidHom_apply
mk'_eq_iff_eq' πŸ“–mathematicalβ€”mk'
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”mk'_eq_iff_eq
mul_comm
mk'_eq_iff_eq_mul πŸ“–mathematicalβ€”mk'
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”eq_mk'_iff_mul_eq
mk'_eq_iff_mk'_eq πŸ“–mathematicalβ€”mk'β€”eq'
mk'_eq_of_eq πŸ“–mathematicalMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
mk'β€”mk'_eq_iff_eq
mk'_eq_of_eq' πŸ“–mathematicalMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
mk'β€”mk'_eq_of_eq
mul_comm
mk'_eq_of_same πŸ“–mathematicalβ€”mk'
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”mk'_eq_iff_eq'
map_mul
MonoidHomClass.toMulHomClass
instMonoidHomClass
eq_iff_exists
map_units
mk'_mul πŸ“–mathematicalβ€”mk'
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
Submonoid.mul
β€”Submonoid.instSubmonoidClass
map_units
mul_inv_left
map_mul
MonoidHomClass.toMulHomClass
instMonoidHomClass
MonoidHom.instMonoidHomClass
mul_mul_mul_comm
mul_left_comm
IsUnit.mul_val_inv
mul_one
mk'_mul_cancel_left πŸ“–mathematicalβ€”mk'
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
β€”mul_comm
mk'_mul_cancel_right
mk'_mul_cancel_right πŸ“–mathematicalβ€”mk'
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
β€”mul_mk'_one_eq_mk'
map_mul
MonoidHomClass.toMulHomClass
instMonoidHomClass
mul_assoc
mk'_self'
mul_one
mk'_mul_eq_mk'_of_mul πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
mk'
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
β€”mul_comm
mul_mk'_eq_mk'_of_mul
mk'_one πŸ“–mathematicalβ€”mk'
Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
Submonoid.one
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
β€”map_units
mk'.eq_1
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
mul_one
mk'_sec πŸ“–mathematicalβ€”mk'
Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
sec
β€”map_units
sec_spec
Submonoid.instSubmonoidClass
mul_inv_left
mul_comm
mk'_self πŸ“–mathematicalSubmonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
mk'
MulOne.toOne
MulOneClass.toMulOne
β€”mk'_self'
mk'_self' πŸ“–mathematicalβ€”mk'
Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
MulOne.toOne
MulOneClass.toMulOne
β€”map_units
Submonoid.instSubmonoidClass
mul_inv_left
mul_one
mk'_spec πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
mk'
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”map_units
mul_assoc
mul_comm
Submonoid.instSubmonoidClass
mul_inv_left
mk'_spec' πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
Submonoid
SetLike.instMembership
Submonoid.instSetLike
mk'
β€”mul_comm
mk'_spec
mk'_surjective πŸ“–mathematicalβ€”mk'β€”mk'_sec
mul_inv πŸ“–mathematicalIsUnit
CommMonoid.toMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
Submonoid
SetLike.instMembership
Submonoid.instSetLike
MulOne.toMul
Units.val
Units
Units.instInv
Submonoid.toMonoid
Units.instMulOneClass
IsUnit.liftRight
MonoidHom.restrict
Submonoid.instSubmonoidClass
β€”Submonoid.instSubmonoidClass
mul_inv_right
mul_assoc
mul_comm
mul_inv_left
MonoidHom.map_mul
mul_inv_left πŸ“–mathematicalIsUnit
CommMonoid.toMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
Submonoid
SetLike.instMembership
Submonoid.instSetLike
MulOne.toMul
Units.val
Units
Units.instInv
Submonoid.toMonoid
Units.instMulOneClass
IsUnit.liftRight
MonoidHom.restrict
Submonoid.instSubmonoidClass
β€”Submonoid.instSubmonoidClass
mul_comm
Units.inv_mul_eq_iff_eq_mul
mul_inv_right πŸ“–mathematicalIsUnit
CommMonoid.toMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
Submonoid
SetLike.instMembership
Submonoid.instSetLike
MulOne.toMul
Units.val
Units
Units.instInv
Submonoid.toMonoid
Units.instMulOneClass
IsUnit.liftRight
MonoidHom.restrict
Submonoid.instSubmonoidClass
β€”Submonoid.instSubmonoidClass
mul_inv_left
mul_comm
mul_mk'_eq_mk'_of_mul πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
mk'
β€”mk'_one
mk'_mul
one_mul
mul_mk'_one_eq_mk' πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
mk'
MulOne.toOne
β€”mul_mk'_eq_mk'_of_mul
mul_one
sec_spec πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
Submonoid
SetLike.instMembership
Submonoid.instSetLike
sec
β€”surj
sec_spec' πŸ“–mathematicalβ€”DFunLike.coe
Submonoid.LocalizationMap
instFunLike
Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
sec
MulOne.toMul
MulOneClass.toMulOne
β€”mul_comm
sec_spec
subsingleton_of_subsingleton πŸ“–β€”β€”β€”β€”mk'_surjective
instSubsingletonSubtype_mathlib
surj πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”Submonoid.IsLocalizationMap.surj
isLocalizationMap
surjβ‚‚ πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
DFunLike.coe
Submonoid.LocalizationMap
instFunLike
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”surj
map_mul
MonoidHomClass.toMulHomClass
instMonoidHomClass
mul_assoc
mul_left_comm
toMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MonoidHom.instFunLike
toMonoidHom
Submonoid.LocalizationMap
instFunLike
β€”β€”
toMonoidHom_injective πŸ“–mathematicalβ€”Submonoid.LocalizationMap
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
toMonoidHom
β€”MulHom.ext
isLocalizationMap
top_injective_iff πŸ“–mathematicalβ€”DFunLike.coe
Submonoid.LocalizationMap
Top.top
Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid.instTop
instFunLike
IsCancelMul
MulOne.toMul
MulOneClass.toMulOne
β€”β€”

(root)

Definitions

NameCategoryTheorems
AddLocalization πŸ“–CompOp
33 mathmath: AddLocalization.isOrderedAddCancelMonoid, AddLocalization.liftOn_mk', AddLocalization.mk_left_injective, AddLocalization.mkOrderEmbedding_apply, AddLocalization.cardinalMk_le, AddLocalization.mk_self, Algebra.GrothendieckAddGroup.neg_mk, AddLocalization.mk_self_mk, AddLocalization.fg, AddLocalization.mk_zero_eq_addMonoidOf_mk, AddLocalization.addEquivOfQuotient_mk', AddLocalization.mk_eq_addMonoidOf_mk', AddLocalization.mk_le_mk, AddLocalization.addEquivOfQuotient_apply, AddSubmonoid.LocalizationMap.instNontrivialLocalizationOfIsCancelAdd, AddLocalization.addEquivOfQuotient_mk, AddLocalization.addEquivOfQuotient_symm_mk', AddLocalization.mk_add, AddLocalization.mk_zero, AddLocalization.mk_lt_mk, AddLocalization.mkHom_apply, AddLocalization.mkHom_surjective, AddLocalization.instIsAddTorsionFree, AddLocalization.mk_sum, AddLocalization.liftOnβ‚‚_mk', AddLocalization.addEquivOfQuotient_symm_mk, Algebra.GrothendieckAddGroup.lift_apply, AddLocalization.addEquivOfQuotient_addMonoidOf, AddLocalization.addEquivOfQuotient_symm_addMonoidOf, AddLocalization.mk_nsmul, AddSubmonoid.LocalizationMap.instIsCancelAddLocalization, AddLocalization.mk_eq_addMonoidOf_mk'_apply, Algebra.GrothendieckAddGroup.mk_sub_mk

---

← Back to Index