Documentation Verification Report

Order

πŸ“ Source: Mathlib/GroupTheory/MonoidLocalization/Order.lean

Statistics

MetricCount
DefinitionsdecidableLE, decidableLT, instLinearAddOrderOfIsOrderedAddCancelMonoid, le, lt, mkOrderEmbedding, partialOrder, decidableLE, decidableLT, instLinearOrderOfIsOrderedCancelMonoid, le, lt, mkOrderEmbedding, partialOrder
14
TheoremsisOrderedAddCancelMonoid, mkOrderEmbedding_apply, mk_le_mk, mk_lt_mk, isOrderedCancelMonoid, mkOrderEmbedding_apply, mk_le_mk, mk_lt_mk
8
Total22

AddLocalization

Definitions

NameCategoryTheorems
decidableLE πŸ“–CompOpβ€”
decidableLT πŸ“–CompOpβ€”
instLinearAddOrderOfIsOrderedAddCancelMonoid πŸ“–CompOpβ€”
le πŸ“–CompOp
2 mathmath: mkOrderEmbedding_apply, mk_le_mk
lt πŸ“–CompOp
1 mathmath: mk_lt_mk
mkOrderEmbedding πŸ“–CompOp
1 mathmath: mkOrderEmbedding_apply
partialOrder πŸ“–CompOp
1 mathmath: isOrderedAddCancelMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
isOrderedAddCancelMonoid πŸ“–mathematicalβ€”IsOrderedCancelAddMonoid
AddLocalization
AddOreLocalization.instAddCommMonoid
AddOreLocalization.addOreSetComm
partialOrder
β€”induction_onβ‚‚
induction_on
mk_add
add_add_add_comm
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
induction_on₃
le_of_add_le_add_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsOrderedCancelAddMonoid.toAddLeftReflectLT
mkOrderEmbedding_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
AddLocalization
Preorder.toLE
PartialOrder.toPreorder
le
RelEmbedding.instFunLike
mkOrderEmbedding
β€”β€”
mk_le_mk πŸ“–mathematicalβ€”AddLocalization
le
Preorder.toLE
PartialOrder.toPreorder
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”β€”
mk_lt_mk πŸ“–mathematicalβ€”AddLocalization
lt
Preorder.toLT
PartialOrder.toPreorder
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
β€”β€”

Localization

Definitions

NameCategoryTheorems
decidableLE πŸ“–CompOpβ€”
decidableLT πŸ“–CompOpβ€”
instLinearOrderOfIsOrderedCancelMonoid πŸ“–CompOpβ€”
le πŸ“–CompOp
2 mathmath: mk_le_mk, mkOrderEmbedding_apply
lt πŸ“–CompOp
1 mathmath: mk_lt_mk
mkOrderEmbedding πŸ“–CompOp
1 mathmath: mkOrderEmbedding_apply
partialOrder πŸ“–CompOp
1 mathmath: isOrderedCancelMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
isOrderedCancelMonoid πŸ“–mathematicalβ€”IsOrderedCancelMonoid
Localization
OreLocalization.instCommMonoid
OreLocalization.oreSetComm
partialOrder
β€”induction_onβ‚‚
induction_on
mk_mul
mul_mul_mul_comm
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
IsOrderedCancelMonoid.toIsOrderedMonoid
induction_on₃
le_of_mul_le_mul_left'
IsLeftCancelMul.mulLeftReflectLE_of_mulLeftReflectLT
IsCancelMul.toIsLeftCancelMul
IsOrderedCancelMonoid.toIsCancelMul
IsOrderedCancelMonoid.toMulLeftReflectLT
mkOrderEmbedding_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
Localization
Preorder.toLE
PartialOrder.toPreorder
le
RelEmbedding.instFunLike
mkOrderEmbedding
β€”β€”
mk_le_mk πŸ“–mathematicalβ€”Localization
le
Preorder.toLE
PartialOrder.toPreorder
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”β€”
mk_lt_mk πŸ“–mathematicalβ€”Localization
lt
Preorder.toLT
PartialOrder.toPreorder
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Submonoid
SetLike.instMembership
Submonoid.instSetLike
β€”β€”

---

← Back to Index