Documentation Verification Report

NoncommPiCoprod

πŸ“ Source: Mathlib/GroupTheory/NoncommPiCoprod.lean

Statistics

MetricCount
DefinitionsnoncommPiCoprod, noncommPiCoprodEquiv, noncommPiCoprod, noncommPiCoprod, noncommPiCoprodEquiv, noncommPiCoprod
6
TheoremsaddCommute_noncommPiCoprod, comp_noncommPiCoprod, independent_range_of_coprime_order, injective_noncommPiCoprod_of_iSupIndep, noncommPiCoprod_apply, noncommPiCoprod_mrange, noncommPiCoprod_range, noncommPiCoprod_single, addCommute_subtype_of_addCommute, eq_zero_of_noncommSum_eq_zero_of_iSupIndep, independent_of_coprime_order, injective_noncommPiCoprod_of_iSupIndep, noncommPiCoprod_apply, noncommPiCoprod_range, noncommPiCoprod_single, commute_noncommPiCoprod, comp_noncommPiCoprod, independent_range_of_coprime_order, injective_noncommPiCoprod_of_iSupIndep, noncommPiCoprod_apply, noncommPiCoprod_mrange, noncommPiCoprod_mulSingle, noncommPiCoprod_range, commute_subtype_of_commute, eq_one_of_noncommProd_eq_one_of_iSupIndep, independent_of_coprime_order, injective_noncommPiCoprod_of_iSupIndep, noncommPiCoprod_apply, noncommPiCoprod_mulSingle, noncommPiCoprod_range
30
Total36

AddMonoidHom

Definitions

NameCategoryTheorems
noncommPiCoprod πŸ“–CompOp
7 mathmath: noncommPiCoprod_apply, noncommPiCoprod_range, comp_noncommPiCoprod, addCommute_noncommPiCoprod, noncommPiCoprod_mrange, noncommPiCoprod_single, injective_noncommPiCoprod_of_iSupIndep
noncommPiCoprodEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
addCommute_noncommPiCoprod πŸ“–mathematicalPairwise
AddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
AddMonoidHom
instFunLike
Pi.addZeroClass
noncommPiCoprod
β€”Finset.noncommSum_induction
AddCommute.add_right
AddCommute.zero_right
comp_noncommPiCoprod πŸ“–mathematicalPairwise
Pairwise.mono
comp
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
noncommPiCoprod
β€”ext
AddCommute.map
AddMonoidHomClass.toAddHomClass
instAddMonoidHomClass
Set.Pairwise.of_refl
AddCommute.on_refl
Finset.map_noncommSum
Finset.noncommSum_congr
independent_range_of_coprime_order πŸ“–mathematicalPairwise
Fintype.card
iSupIndep
AddSubgroup
AddSubgroup.instCompleteLattice
range
β€”nonempty_fintype
disjoint_iff_inf_le
noncommPiCoprod_range
iSup_subtype'
Dvd.dvd.trans
addOrderOf_map_dvd
addOrderOf_dvd_card
Fintype.card_pi
one_nsmul
addOrderOf_dvd_iff_nsmul_eq_zero
Nat.coprime_fintype_prod_left_iff
injective_noncommPiCoprod_of_iSupIndep πŸ“–mathematicalPairwise
iSupIndep
AddSubgroup
AddSubgroup.instCompleteLattice
range
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instFunLike
Pi.addZeroClass
noncommPiCoprod
β€”ker_eq_bot_iff
eq_bot_iff
AddSubgroup.eq_zero_of_noncommSum_eq_zero_of_iSupIndep
Finset.mem_univ
mem_range
map_zero
AddMonoidHomClass.toZeroHomClass
instAddMonoidHomClass
noncommPiCoprod_apply πŸ“–mathematicalPairwiseDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
instFunLike
noncommPiCoprod
Finset.noncommSum
Finset.univ
Pairwise.set_pairwise
AddCommute
AddZero.toAdd
SetLike.coe
Finset
Finset.instSetLike
β€”β€”
noncommPiCoprod_mrange πŸ“–mathematicalPairwisemrange
Pi.addZeroClass
AddMonoid.toAddZeroClass
AddMonoidHom
AddZeroClass.toAddZero
instFunLike
instAddMonoidHomClass
noncommPiCoprod
iSup
AddSubmonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
AddSubmonoid.instCompleteLattice
β€”le_antisymm
instAddMonoidHomClass
AddSubmonoid.noncommSum_mem
AddSubmonoid.mem_sSup_of_mem
mem_mrange
iSup_le
noncommPiCoprod_single
noncommPiCoprod_range πŸ“–mathematicalPairwiserange
Pi.addGroup
noncommPiCoprod
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
iSup
AddSubgroup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
AddSubgroup.instCompleteLattice
β€”le_antisymm
AddSubgroup.noncommSum_mem
AddSubgroup.mem_sSup_of_mem
mem_range
iSup_le
noncommPiCoprod_single
noncommPiCoprod_single πŸ“–mathematicalPairwiseDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
instFunLike
noncommPiCoprod
Pi.single
AddZero.toZero
β€”Finset.insert_erase
Finset.mem_univ
Set.Pairwise.mono
Finset.mem_insert_of_mem
Finset.noncommSum_insert_of_notMem
Finset.notMem_erase
Pi.single_eq_same
Finset.noncommSum_eq_card_nsmul
Pi.single_eq_of_ne
Finset.mem_erase
map_zero
AddMonoidHomClass.toZeroHomClass
instAddMonoidHomClass
nsmul_zero
add_zero

AddSubgroup

Definitions

NameCategoryTheorems
noncommPiCoprod πŸ“–CompOp
4 mathmath: noncommPiCoprod_single, noncommPiCoprod_range, noncommPiCoprod_apply, injective_noncommPiCoprod_of_iSupIndep

Theorems

NameKindAssumesProvesValidatesDepends On
addCommute_subtype_of_addCommute πŸ“–mathematicalPairwiseAddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DFunLike.coe
AddMonoidHom
AddSubgroup
SetLike.instMembership
instSetLike
toAddGroup
AddMonoidHom.instFunLike
subtype
β€”β€”
eq_zero_of_noncommSum_eq_zero_of_iSupIndep πŸ“–β€”Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Function.onFun
AddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
iSupIndep
AddSubgroup
instCompleteLattice
SetLike.instMembership
instSetLike
Finset.noncommSum
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Finset.instMembership
β€”β€”Finset.induction_on
Finset.notMem_empty
IsEmpty.forall_iff
instIsEmptyFalse
Set.Pairwise.mono
Finset.coe_subset
Finset.subset_insert
noncommSum_mem
le_iSupβ‚‚
Finset.forall_mem_insert
SetLike.mem_coe
disjoint_iff_add_eq_zero
iSupIndep.disjoint_biSup
Finset.mem_insert_of_mem
Finset.noncommSum_insert_of_notMem
Finset.mem_insert
independent_of_coprime_order πŸ“–mathematicalPairwise
Fintype.card
AddSubgroup
SetLike.instMembership
instSetLike
iSupIndep
instCompleteLattice
β€”range_subtype
AddMonoidHom.independent_range_of_coprime_order
addCommute_subtype_of_addCommute
injective_noncommPiCoprod_of_iSupIndep πŸ“–mathematicalPairwise
iSupIndep
AddSubgroup
instCompleteLattice
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
SetLike.instMembership
instSetLike
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddGroup
AddMonoidHom.instFunLike
noncommPiCoprod
β€”AddMonoidHom.injective_noncommPiCoprod_of_iSupIndep
addCommute_subtype_of_addCommute
range_subtype
Subtype.coe_injective
noncommPiCoprod_apply πŸ“–mathematicalPairwiseDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddSubgroup
SetLike.instMembership
instSetLike
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddGroup
AddMonoidHom.instFunLike
noncommPiCoprod
Finset.noncommSum
Finset.univ
Subtype.prop
β€”Subtype.prop
addCommute_subtype_of_addCommute
Finset.noncommSum_congr
noncommPiCoprod_range πŸ“–mathematicalPairwiseAddMonoidHom.range
Pi.addGroup
AddSubgroup
SetLike.instMembership
instSetLike
toAddGroup
noncommPiCoprod
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”addCommute_subtype_of_addCommute
AddMonoidHom.noncommPiCoprod_range
range_subtype
noncommPiCoprod_single πŸ“–mathematicalPairwiseDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddSubgroup
SetLike.instMembership
instSetLike
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddGroup
AddMonoidHom.instFunLike
noncommPiCoprod
Pi.single
zero
β€”AddMonoidHom.noncommPiCoprod_single
addCommute_subtype_of_addCommute

MonoidHom

Definitions

NameCategoryTheorems
noncommPiCoprod πŸ“–CompOp
7 mathmath: noncommPiCoprod_apply, noncommPiCoprod_mulSingle, noncommPiCoprod_mrange, comp_noncommPiCoprod, noncommPiCoprod_range, injective_noncommPiCoprod_of_iSupIndep, commute_noncommPiCoprod
noncommPiCoprodEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
commute_noncommPiCoprod πŸ“–mathematicalPairwise
Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
MonoidHom
instFunLike
Pi.mulOneClass
noncommPiCoprod
β€”Finset.noncommProd_induction
Commute.mul_right
Commute.one_right
comp_noncommPiCoprod πŸ“–mathematicalPairwise
Pairwise.mono
comp
MulOneClass.toMulOne
Pi.mulOneClass
Monoid.toMulOneClass
noncommPiCoprod
β€”ext
Commute.map
MonoidHomClass.toMulHomClass
instMonoidHomClass
Set.Pairwise.of_refl
Commute.on_refl
Finset.map_noncommProd
Finset.noncommProd_congr
independent_range_of_coprime_order πŸ“–mathematicalPairwise
Fintype.card
iSupIndep
Subgroup
Subgroup.instCompleteLattice
range
β€”nonempty_fintype
disjoint_iff_inf_le
noncommPiCoprod_range
iSup_subtype'
Dvd.dvd.trans
orderOf_map_dvd
orderOf_dvd_card
Fintype.card_pi
pow_one
orderOf_dvd_iff_pow_eq_one
Nat.coprime_fintype_prod_left_iff
injective_noncommPiCoprod_of_iSupIndep πŸ“–mathematicalPairwise
iSupIndep
Subgroup
Subgroup.instCompleteLattice
range
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instFunLike
Pi.mulOneClass
noncommPiCoprod
β€”ker_eq_bot_iff
eq_bot_iff
Subgroup.eq_one_of_noncommProd_eq_one_of_iSupIndep
Finset.mem_univ
map_one
MonoidHomClass.toOneHomClass
instMonoidHomClass
noncommPiCoprod_apply πŸ“–mathematicalPairwiseDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Pi.mulOneClass
Monoid.toMulOneClass
instFunLike
noncommPiCoprod
Finset.noncommProd
Finset.univ
Pairwise.set_pairwise
Commute
MulOne.toMul
SetLike.coe
Finset
Finset.instSetLike
β€”β€”
noncommPiCoprod_mrange πŸ“–mathematicalPairwisemrange
Pi.mulOneClass
Monoid.toMulOneClass
MonoidHom
MulOneClass.toMulOne
instFunLike
instMonoidHomClass
noncommPiCoprod
iSup
Submonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submonoid.instCompleteLattice
β€”le_antisymm
instMonoidHomClass
Submonoid.noncommProd_mem
Submonoid.mem_sSup_of_mem
iSup_le
noncommPiCoprod_mulSingle
noncommPiCoprod_mulSingle πŸ“–mathematicalPairwiseDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Pi.mulOneClass
Monoid.toMulOneClass
instFunLike
noncommPiCoprod
Pi.mulSingle
MulOne.toOne
β€”Finset.insert_erase
Finset.mem_univ
Set.Pairwise.mono
Finset.mem_insert_of_mem
Finset.noncommProd_insert_of_notMem
Finset.notMem_erase
Pi.mulSingle_eq_same
Finset.noncommProd_eq_pow_card
Pi.mulSingle_eq_of_ne
map_one
MonoidHomClass.toOneHomClass
instMonoidHomClass
one_pow
mul_one
noncommPiCoprod_range πŸ“–mathematicalPairwiserange
Pi.group
noncommPiCoprod
DivInvMonoid.toMonoid
Group.toDivInvMonoid
iSup
Subgroup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Subgroup.instCompleteLattice
β€”le_antisymm
Subgroup.noncommProd_mem
Subgroup.mem_sSup_of_mem
iSup_le
noncommPiCoprod_mulSingle

Subgroup

Definitions

NameCategoryTheorems
noncommPiCoprod πŸ“–CompOp
6 mathmath: Equiv.Perm.disjoint_ofSubtype_noncommPiCoprod, noncommPiCoprod_apply, injective_noncommPiCoprod_of_iSupIndep, noncommPiCoprod_mulSingle, noncommPiCoprod_range, Equiv.Perm.commute_ofSubtype_noncommPiCoprod

Theorems

NameKindAssumesProvesValidatesDepends On
commute_subtype_of_commute πŸ“–mathematicalPairwiseCommute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MonoidHom
Subgroup
SetLike.instMembership
instSetLike
toGroup
MonoidHom.instFunLike
subtype
β€”β€”
eq_one_of_noncommProd_eq_one_of_iSupIndep πŸ“–β€”Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Function.onFun
Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
iSupIndep
Subgroup
instCompleteLattice
SetLike.instMembership
instSetLike
Finset.noncommProd
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Finset.instMembership
β€”β€”Finset.induction_on
instIsEmptyFalse
Set.Pairwise.mono
Finset.coe_subset
Finset.subset_insert
noncommProd_mem
le_iSupβ‚‚
disjoint_iff_mul_eq_one
iSupIndep.disjoint_biSup
Finset.mem_insert_of_mem
Finset.noncommProd_insert_of_notMem
independent_of_coprime_order πŸ“–mathematicalPairwise
Fintype.card
Subgroup
SetLike.instMembership
instSetLike
iSupIndep
instCompleteLattice
β€”range_subtype
MonoidHom.independent_range_of_coprime_order
commute_subtype_of_commute
injective_noncommPiCoprod_of_iSupIndep πŸ“–mathematicalPairwise
iSupIndep
Subgroup
instCompleteLattice
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Pi.mulOneClass
SetLike.instMembership
instSetLike
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toGroup
MonoidHom.instFunLike
noncommPiCoprod
β€”MonoidHom.injective_noncommPiCoprod_of_iSupIndep
commute_subtype_of_commute
range_subtype
Subtype.coe_injective
noncommPiCoprod_apply πŸ“–mathematicalPairwiseDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Pi.mulOneClass
Subgroup
SetLike.instMembership
instSetLike
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toGroup
MonoidHom.instFunLike
noncommPiCoprod
Finset.noncommProd
Finset.univ
Subtype.prop
β€”Subtype.prop
commute_subtype_of_commute
Finset.noncommProd_congr
noncommPiCoprod_mulSingle πŸ“–mathematicalPairwiseDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Pi.mulOneClass
Subgroup
SetLike.instMembership
instSetLike
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toGroup
MonoidHom.instFunLike
noncommPiCoprod
Pi.mulSingle
one
β€”MonoidHom.noncommPiCoprod_mulSingle
commute_subtype_of_commute
noncommPiCoprod_range πŸ“–mathematicalPairwiseMonoidHom.range
Pi.group
Subgroup
SetLike.instMembership
instSetLike
toGroup
noncommPiCoprod
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”commute_subtype_of_commute
MonoidHom.noncommPiCoprod_range
range_subtype

---

← Back to Index