Documentation Verification Report

OrderOfElement

📁 Source: Mathlib/GroupTheory/OrderOfElement.lean

Statistics

MetricCount
DefinitionsIsOfFinAddOrder, addGroupMultiples, addUnit, IsOfFinOrder, groupPowers, unit, addOrderOf, addSubgroupOfIdempotent, addSubmonoidOfIdempotent, finEquivMultiples, finEquivPowers, finEquivZMultiples, finEquivZPowers, multiplesEquivMultiples, nsmulCoprime, orderOf, powCardSubgroup, powCoprime, powersEquivPowers, smulCardAddSubgroup, subgroupOfIdempotent, submonoidOfIdempotent, zmultiplesEquivZMultiples, zpowersEquivZPowers
24
TheoremsaddOrderOf_add_dvd_lcm, addOrderOf_add_dvd_mul_addOrderOf, addOrderOf_add_eq_mul_addOrderOf_of_coprime, addOrderOf_add_eq_right_of_forall_prime_mul_dvd, addOrderOf_dvd_lcm_add, isOfFinAddOrder_add, addOrderOf_eq, addOrderOf_eq_one_iff, isOfFinAddOrder, addOrderOf_eq, addOrderOf_coe, addOrderOf_dvd_natCard, addOrderOf_le_card, addOrderOf_mk, closure_toAddSubmonoid_of_finite, closure_toAddSubmonoid_of_isOfFinAddOrder, nsmul_index_mem, zmultiples_eq_zmultiples_iff, addOrderOf_le_card, isOfFinAddOrder_coe, isOfFinAddOrder_val, addOrderOf_one, orderOf_eq_two_iff, isOfFinOrder_mul, orderOf_dvd_lcm_mul, orderOf_mul_dvd_lcm, orderOf_mul_dvd_mul_orderOf, orderOf_mul_eq_mul_orderOf_of_coprime, orderOf_mul_eq_right_of_forall_prime_mul_dvd, card_zmultiples, card_zpowers, isOfFinAddOrder_iff, isOfFinOrder_iff, of_not_isOfFinAddOrder, addOrderOf_eq_zero, isOfFinOrder, of_not_isOfFinOrder, add, addOrderOf_nsmul, addOrderOf_pos, apply, eq_zero', exists_nsmul_eq_zero, finite_multiples, fst, isAddUnit, mem_multiples_iff_mem_range_addOrderOf, mem_multiples_iff_mem_zmultiples, mem_zmultiples_iff_mem_range_addOrderOf, mono, multiples_eq_image_range_addOrderOf, multiples_eq_zmultiples, natCard_multiples_le_addOrderOf, neg, nsmul, nsmul_eq_nsmul_iff_modEq, nsmul_inj_mod, of_mem_zmultiples, of_neg, of_nsmul, pi, prod_mk, snd, val_addUnit, val_neg_addUnit, zero, zsmul, apply, eq_neg_one, eq_one, eq_one', exists_pow_eq_one, finite_powers, fst, inv, isUnit, mem_powers_iff_mem_range_orderOf, mem_powers_iff_mem_zpowers, mem_zpowers_iff_mem_range_orderOf, mono, mul, natCard_powers_le_orderOf, of_inv, of_mem_zpowers, of_pow, one, orderOf_pos, orderOf_pow, pi, pow, pow_eq_pow_iff_modEq, pow_inj_mod, powers_eq_image_range_orderOf, powers_eq_zpowers, prod_mk, snd, val_inv_unit, val_unit, zpow, isOfFinOrder, orderOf_eq_one, orderOf_le_two, isOfFinOrder, orderOf_eq, addOrderOf_nsmul, nsmul_right_bijective, orderOf_pow, pow_left_bijective, card_addSubmonoidMultiples, card_submonoidPowers, cast_card_eq_zero, addOrderOf, addOrderOf_eq_sInf, orderOf, orderOf_eq_sInf, addOrderOf, addOrderOf_mk, orderOf, orderOf_mk, orderOf_eq, closure_toSubmonoid_of_finite, closure_toSubmonoid_of_isOfFinOrder, orderOf_coe, orderOf_dvd_natCard, orderOf_le_card, orderOf_mk, pow_index_mem, zpowers_eq_zpowers_iff, isOfFinOrder_coe, orderOf_le_card, addOrderOf_eq, orderOf_eq, isOfFinOrder_val, addOrderOf_addSubmonoid, addOrderOf_addUnits, addOrderOf_apply_dvd_addOrderOf, addOrderOf_dvd_card, addOrderOf_dvd_iff_nsmul_eq_zero, addOrderOf_dvd_iff_zsmul_eq_zero, addOrderOf_dvd_natCard, addOrderOf_dvd_of_mem_zmultiples, addOrderOf_dvd_of_nsmul_eq_zero, addOrderOf_dvd_sub_iff_zsmul_eq_zsmul, addOrderOf_eq_addOrderOf_iff, addOrderOf_eq_card_multiples, addOrderOf_eq_iff, addOrderOf_eq_of_nsmul_and_div_prime_nsmul, addOrderOf_eq_prime, addOrderOf_eq_prime_iff, addOrderOf_eq_prime_pow, addOrderOf_eq_zero, addOrderOf_eq_zero_iff, addOrderOf_eq_zero_iff', addOrderOf_fst_dvd_addOrderOf, addOrderOf_injective, addOrderOf_le_card, addOrderOf_le_card_univ, addOrderOf_le_of_nsmul_eq_zero, addOrderOf_map_dvd, addOrderOf_ne_zero_iff, addOrderOf_neg, addOrderOf_nsmul, addOrderOf_nsmul', addOrderOf_nsmul_addOrderOf_sub, addOrderOf_nsmul_eq_zero, addOrderOf_nsmul_of_dvd, addOrderOf_ofMul_eq_orderOf, addOrderOf_pos, addOrderOf_pos_iff, addOrderOf_smul_dvd, addOrderOf_snd_dvd_addOrderOf, addOrderOf_zero, card_nsmul_eq_zero, card_nsmul_eq_zero', card_zmultiples_le, card_zpowers_le, charP_of_ne_zero, charP_of_prime_pow_injective, coe_powCardSubgroup, coe_smulCardAddSubgroup, exists_addOrderOf_eq_prime_pow_iff, exists_nsmul_eq_self_of_coprime, exists_orderOf_eq_prime_pow_iff, exists_pow_eq_self_of_coprime, exists_zpow_eq_one, exists_zsmul_eq_zero, finEquivMultiples_apply, finEquivMultiples_symm_apply, finEquivPowers_apply, finEquivPowers_symm_apply, finEquivZMultiples_apply, finEquivZMultiples_symm_apply, finEquivZPowers_apply, finEquivZPowers_symm_apply, finite_multiples, finite_powers, image_range_addOrderOf, image_range_orderOf, infinite_multiples, infinite_not_isOfFinAddOrder, infinite_not_isOfFinOrder, infinite_powers, injective_nsmul_iff_not_isOfFinAddOrder, injective_pow_iff_not_isOfFinOrder, injective_zpow_iff_not_isOfFinOrder, injective_zsmul_iff_not_isOfFinAddOrder, isAddTorsionFree_iff_not_isOfFinAddOrder, isMulTorsionFree_iff_not_isOfFinOrder, isOfFinAddOrder_iff_nsmul_eq_zero, isOfFinAddOrder_iff_zsmul_eq_zero, isOfFinAddOrder_neg_iff, isOfFinAddOrder_nsmul, isOfFinAddOrder_ofMul_iff, isOfFinAddOrder_of_finite, isOfFinOrder_iff_isUnit, isOfFinOrder_iff_pow_eq_one, isOfFinOrder_iff_zpow_eq_one, isOfFinOrder_inv_iff, isOfFinOrder_ofAdd_iff, isOfFinOrder_of_finite, isOfFinOrder_pow, isPeriodicPt_add_iff_nsmul_eq_zero, isPeriodicPt_mul_iff_pow_eq_one, mem_multiples_iff_mem_range_addOrderOf, mem_multiples_iff_mem_zmultiples, mem_powers_iff_mem_range_orderOf, mem_powers_iff_mem_zpowers, mem_zmultiples_iff_mem_range_addOrderOf, mem_zmultiples_nsmul_iff, mem_zmultiples_zsmul_iff, mem_zpowers_iff_mem_range_orderOf, mem_zpowers_pow_iff, mem_zpowers_zpow_iff, mod_addOrderOf_nsmul, mod_addOrderOf_zsmul, mod_card_nsmul, mod_card_zsmul, mod_natCard_nsmul, mod_natCard_zsmul, multiplesEquivMultiples_apply, multiples_eq_zmultiples, not_isAddTorsionFree_iff_isOfFinAddOrder, not_isMulTorsionFree_iff_isOfFinOrder, not_isOfFinAddOrder_of_injective_nsmul, not_isOfFinAddOrder_of_isAddTorsionFree, not_isOfFinOrder_of_injective_pow, not_isOfFinOrder_of_isMulTorsionFree, nsmulCoprime_apply, nsmulCoprime_neg, nsmulCoprime_symm_apply, nsmulCoprime_zero, nsmul_eq_nsmul_iff_modEq, nsmul_eq_nsmul_of_modEq, nsmul_eq_zero_iff_modEq, nsmul_finEquivZMultiples_symm_apply, nsmul_injOn_Iio_addOrderOf, nsmul_inj_iff_of_addOrderOf_eq_zero, nsmul_inj_mod, nsmul_ne_zero_of_lt_addOrderOf, orderOf_abs_ne_one, orderOf_apply_dvd_orderOf, orderOf_dvd_card, orderOf_dvd_iff_pow_eq_one, orderOf_dvd_iff_zpow_eq_one, orderOf_dvd_natCard, orderOf_dvd_of_mem_zpowers, orderOf_dvd_of_pow_eq_one, orderOf_dvd_sub_iff_zpow_eq_zpow, orderOf_eq_card_powers, orderOf_eq_iff, orderOf_eq_of_pow_and_pow_div_prime, orderOf_eq_one_iff, orderOf_eq_orderOf_iff, orderOf_eq_prime, orderOf_eq_prime_iff, orderOf_eq_prime_pow, orderOf_eq_zero, orderOf_eq_zero_iff, orderOf_eq_zero_iff', orderOf_eq_zero_iff_eq_zero, orderOf_fst_dvd_orderOf, orderOf_injective, orderOf_inv, orderOf_le_card, orderOf_le_card_univ, orderOf_le_of_pow_eq_one, orderOf_map_dvd, orderOf_ne_zero_iff, orderOf_neg_one, orderOf_ofAdd_eq_addOrderOf, orderOf_one, orderOf_piMulSingle, orderOf_pos, orderOf_pos_iff, orderOf_pow, orderOf_pow', orderOf_pow_dvd, orderOf_pow_of_dvd, orderOf_pow_orderOf_div, orderOf_snd_dvd_orderOf, orderOf_submonoid, orderOf_units, orderOf_zero, powCoprime_apply, powCoprime_inv, powCoprime_one, powCoprime_symm_apply, pow_card_eq_one, pow_card_eq_one', pow_eq_one_iff_modEq, pow_eq_pow_iff_modEq, pow_eq_pow_of_modEq, pow_finEquivZPowers_symm_apply, pow_gcd_card_eq_one_iff, pow_injOn_Iio_orderOf, pow_inj_iff_of_orderOf_eq_zero, pow_inj_mod, pow_mod_card, pow_mod_natCard, pow_mod_orderOf, pow_ne_one_of_lt_orderOf, pow_orderOf_eq_one, powersEquivPowers_apply, powers_eq_zpowers, smul_eq_of_le_smul, smul_eq_of_smul_le, smul_eq_self_of_mem_zpowers, sum_card_addOrderOf_eq_card_nsmul_eq_zero, sum_card_orderOf_eq_card_pow_eq_one, vadd_eq_self_of_mem_zmultiples, zmultiples_abs, zmultiples_equiv_zmultiples_apply, zpow_eq_one_iff_modEq, zpow_eq_zpow_iff_modEq, zpow_mod_card, zpow_mod_natCard, zpow_mod_orderOf, zpow_pow_orderOf, zpowersEquivZPowers_apply, zpowers_mabs, zsmul_eq_zero_iff_modEq, zsmul_eq_zsmul_iff_modEq, zsmul_smul_addOrderOf
343
Total367

AddCommute

Theorems

NameKindAssumesProvesValidatesDepends On
addOrderOf_add_dvd_lcm 📖mathematicalAddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addOrderOfaddOrderOf.eq_1
comp_add_left
Function.Commute.minimalPeriod_of_comp_dvd_lcm
function_commute_add_left
addOrderOf_add_dvd_mul_addOrderOf 📖mathematicalAddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addOrderOfdvd_trans
addOrderOf_add_dvd_lcm
addOrderOf_add_eq_mul_addOrderOf_of_coprime 📖AddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addOrderOf
addOrderOf.eq_1
comp_add_left
Function.Commute.minimalPeriod_of_comp_eq_mul_of_coprime
function_commute_add_left
addOrderOf_add_eq_right_of_forall_prime_mul_dvd 📖AddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
IsOfFinAddOrder
addOrderOf
IsOfFinAddOrder.addOrderOf_pos
Nat.dvd_of_forall_prime_mul_dvd
addOrderOf_eq_of_nsmul_and_div_prime_nsmul
addOrderOf_dvd_iff_nsmul_eq_zero
Dvd.dvd.trans
addOrderOf_add_dvd_lcm
dvd_rfl
Nat.Prime.ne_one
mul_dvd_mul_iff_right
Nat.instIsCancelMulZero
LT.lt.ne'
one_mul
addOrderOf_dvd_lcm_add
Nat.Prime.coprime_iff_not_dvd
addOrderOf_dvd_lcm_add 📖mathematicalAddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addOrderOfdvd_zero
zero_add
addOrderOf_nsmul_eq_zero
succ_nsmul
add_assoc
Dvd.dvd.trans
addOrderOf_add_dvd_lcm
nsmul_left
add_right
refl
addOrderOf_smul_dvd
isOfFinAddOrder_add 📖AddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
IsOfFinAddOrder
addOrderOf_pos_iff
addOrderOf_add_dvd_mul_addOrderOf
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
IsOfFinAddOrder.addOrderOf_pos

AddEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
addOrderOf_eq 📖mathematicaladdOrderOf
DFunLike.coe
AddEquiv
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
EquivLike.toFunLike
instEquivLike
addOrderOf_injective
injective

AddMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
addOrderOf_eq_one_iff 📖mathematicaladdOrderOf
AddZero.toZero
AddZeroClass.toAddZero
toAddZeroClass
addOrderOf.eq_1
Function.minimalPeriod_eq_one_iff_isFixedPt
Function.IsFixedPt.eq_1
add_zero

AddMonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
isOfFinAddOrder 📖mathematicalIsOfFinAddOrderDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instFunLike
isOfFinAddOrder_iff_nsmul_eq_zero
IsOfFinAddOrder.exists_nsmul_eq_zero
map_nsmul
map_zero

AddSemiconjBy

Theorems

NameKindAssumesProvesValidatesDepends On
addOrderOf_eq 📖mathematicalAddSemiconjBy
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
addOrderOfaddOrderOf_eq_addOrderOf_iff
eq_zero_iff
nsmul_right

AddSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
addOrderOf_coe 📖mathematicaladdOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup
SetLike.instMembership
instSetLike
toAddGroup
addOrderOf_injective
Subtype.coe_injective
addOrderOf_dvd_natCard 📖mathematicalAddSubgroup
SetLike.instMembership
instSetLike
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Nat.card
addOrderOf_dvd_natCard
addOrderOf_le_card 📖mathematicalAddSubgroup
SetLike.instMembership
instSetLike
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Nat.card
Nat.card_pos_iff
Set.Nonempty.to_subtype
coe_nonempty
Set.Finite.to_subtype
addOrderOf_dvd_natCard
addOrderOf_mk 📖mathematicalAddSubgroup
SetLike.instMembership
instSetLike
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddGroup
addOrderOf_coe
closure_toAddSubmonoid_of_finite 📖mathematicaltoAddSubmonoid
closure
AddSubmonoid.closure
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
closure_toAddSubmonoid_of_isOfFinAddOrder
isOfFinAddOrder_of_finite
closure_toAddSubmonoid_of_isOfFinAddOrder 📖mathematicalIsOfFinAddOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddSubmonoid
closure
AddSubmonoid.closure
AddMonoid.toAddZeroClass
le_antisymm
closure_toAddSubmonoid
AddSubmonoid.closure_le
Set.union_subset
AddSubmonoid.subset_closure
AddSubmonoid.multiples_le
IsOfFinAddOrder.mem_multiples_iff_mem_zmultiples
zmultiples_neg
mem_zmultiples
le_closure_toAddSubmonoid
nsmul_index_mem 📖mathematicalAddSubgroup
SetLike.instMembership
instSetLike
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
index
QuotientAddGroup.eq_zero_iff
QuotientAddGroup.mk_nsmul
index.eq_1
card_nsmul_eq_zero'
zmultiples_eq_zmultiples_iff 📖mathematicalIsOfFinAddOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
zmultiples
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
mem_zmultiples
mem_zmultiples_iff
injective_zsmul_iff_not_isOfFinAddOrder
one_zsmul
mul_zsmul'
Int.mul_eq_one_iff_eq_one_or_neg_one
neg_zsmul
zmultiples_neg

AddSubmonoid

Theorems

NameKindAssumesProvesValidatesDepends On
addOrderOf_le_card 📖mathematicalAddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SetLike.instMembership
instSetLike
addOrderOf
Nat.card
Nat.card_addSubmonoidMultiples
Nat.card_mono
multiples_le
isOfFinAddOrder_coe 📖mathematicalIsOfFinAddOrder
AddSubmonoid
AddMonoid.toAddZeroClass
SetLike.instMembership
instSetLike
toAddMonoid
isOfFinAddOrder_iff_nsmul_eq_zero
instAddSubmonoidClass
AddSubmonoidClass.toZeroMemClass
ZeroMemClass.coe_eq_zero

AddUnits

Theorems

NameKindAssumesProvesValidatesDepends On
isOfFinAddOrder_val 📖mathematicalIsOfFinAddOrder
val
AddUnits
instAddMonoid
Function.Injective.isOfFinAddOrder_iff
coeHom_injective

CharP

Theorems

NameKindAssumesProvesValidatesDepends On
addOrderOf_one 📖mathematicalCharP
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
addOrderOf
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toOne
Nat.smul_one_eq_cast
addOrderOf_dvd_iff_nsmul_eq_zero
orderOf_eq_two_iff 📖mathematicalorderOf
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.fact_prime_two
neg_one_eq_one_iff
ringChar.eq

Commute

Theorems

NameKindAssumesProvesValidatesDepends On
isOfFinOrder_mul 📖Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
IsOfFinOrder
orderOf_pos_iff
orderOf_mul_dvd_mul_orderOf
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
IsOfFinOrder.orderOf_pos
orderOf_dvd_lcm_mul 📖mathematicalCommute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
orderOfdvd_zero
one_mul
pow_orderOf_eq_one
pow_succ
mul_assoc
Dvd.dvd.trans
orderOf_mul_dvd_lcm
pow_left
mul_right
refl
orderOf_pow_dvd
orderOf_mul_dvd_lcm 📖mathematicalCommute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
orderOforderOf.eq_1
comp_mul_left
Function.Commute.minimalPeriod_of_comp_dvd_lcm
function_commute_mul_left
orderOf_mul_dvd_mul_orderOf 📖mathematicalCommute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
orderOfdvd_trans
orderOf_mul_dvd_lcm
orderOf_mul_eq_mul_orderOf_of_coprime 📖Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
orderOf
orderOf.eq_1
comp_mul_left
Function.Commute.minimalPeriod_of_comp_eq_mul_of_coprime
function_commute_mul_left
orderOf_mul_eq_right_of_forall_prime_mul_dvd 📖Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
IsOfFinOrder
orderOf
IsOfFinOrder.orderOf_pos
Nat.dvd_of_forall_prime_mul_dvd
orderOf_eq_of_pow_and_pow_div_prime
Dvd.dvd.trans
orderOf_mul_dvd_lcm
dvd_rfl
Nat.Prime.ne_one
mul_dvd_mul_iff_right
Nat.instIsCancelMulZero
LT.lt.ne'
one_mul
orderOf_dvd_lcm_mul
Nat.Prime.coprime_iff_not_dvd

Fintype

Theorems

NameKindAssumesProvesValidatesDepends On
card_zmultiples 📖mathematicalcard
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
AddSubgroup.instFintypeSubtypeMemOfDecidablePred
AddSubgroup.decidableMemZMultiples
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
card_eq
isOfFinAddOrder_of_finite
Finite.of_fintype
card_fin
card_zpowers 📖mathematicalcard
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
Subgroup.instFintypeSubtypeMemOfDecidablePred
Subgroup.decidableMemZPowers
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
card_eq
isOfFinOrder_of_finite
Finite.of_fintype
card_fin

Function.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
isOfFinAddOrder_iff 📖mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
IsOfFinAddOrderaddOrderOf_pos_iff
addOrderOf_injective
isOfFinOrder_iff 📖mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
IsOfFinOrderorderOf_pos_iff
orderOf_injective

IsAddTorsionFree

Theorems

NameKindAssumesProvesValidatesDepends On
of_not_isOfFinAddOrder 📖mathematicalIsOfFinAddOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
IsAddTorsionFreeisAddTorsionFree_iff_not_isOfFinAddOrder

IsAddUnit

Theorems

NameKindAssumesProvesValidatesDepends On
addOrderOf_eq_zero 📖mathematicalIsAddUnitaddOrderOfisAddUnit_iff_eq_zero
addOrderOf_zero

IsConj

Theorems

NameKindAssumesProvesValidatesDepends On
isOfFinOrder 📖IsConj
IsOfFinOrder
isConj_one_right
pow

IsMulTorsionFree

Theorems

NameKindAssumesProvesValidatesDepends On
of_not_isOfFinOrder 📖mathematicalIsOfFinOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
IsMulTorsionFreeisMulTorsionFree_iff_not_isOfFinOrder

IsOfFinAddOrder

Definitions

NameCategoryTheorems
addGroupMultiples 📖CompOp
addUnit 📖CompOp
2 mathmath: val_neg_addUnit, val_addUnit

Theorems

NameKindAssumesProvesValidatesDepends On
add 📖mathematicalIsOfFinAddOrder
AddCommMonoid.toAddMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommute.isOfFinAddOrder_add
AddCommute.all
addOrderOf_nsmul 📖mathematicalIsOfFinAddOrderaddOrderOf
AddMonoid.toNatSMul
Function.minimalPeriod_iterate_eq_div_gcd'
add_left_iterate
addOrderOf_pos 📖mathematicalIsOfFinAddOrderaddOrderOfFunction.minimalPeriod_pos_of_mem_periodicPts
apply 📖IsOfFinAddOrder
Pi.addMonoid
exists_nsmul_eq_zero
isOfFinAddOrder_iff_nsmul_eq_zero
eq_zero' 📖mathematicalIsOfFinAddOrderAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Mathlib.Tactic.Contrapose.contrapose₁
not_isOfFinAddOrder_of_isAddTorsionFree
exists_nsmul_eq_zero 📖mathematicalIsOfFinAddOrderAddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
isOfFinAddOrder_iff_nsmul_eq_zero
finite_multiples 📖mathematicalIsOfFinAddOrderSet.Finite
SetLike.coe
AddSubmonoid
AddMonoid.toAddZeroClass
AddSubmonoid.instSetLike
AddSubmonoid.multiples
multiples_eq_image_range_addOrderOf
Finset.finite_toSet
fst 📖IsOfFinAddOrder
Prod.instAddMonoid
mono
addOrderOf_fst_dvd_addOrderOf
isAddUnit 📖mathematicalIsOfFinAddOrderIsAddUnit
mem_multiples_iff_mem_range_addOrderOf 📖mathematicalIsOfFinAddOrderAddSubmonoid
AddMonoid.toAddZeroClass
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.multiples
Finset
Finset.instMembership
Finset.image
AddMonoid.toNatSMul
Finset.range
addOrderOf
Finset.mem_range_iff_mem_finset_range_of_mod_eq'
addOrderOf_pos
mod_addOrderOf_nsmul
mem_multiples_iff_mem_zmultiples 📖mathematicalIsOfFinAddOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubmonoid
AddMonoid.toAddZeroClass
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.multiples
AddSubgroup
AddSubgroup.instSetLike
AddSubgroup.zmultiples
natCast_zsmul
addOrderOf_pos
mod_addOrderOf_zsmul
mem_zmultiples_iff_mem_range_addOrderOf 📖mathematicalIsOfFinAddOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
Finset
Finset.instMembership
Finset.image
AddMonoid.toNatSMul
Finset.range
addOrderOf
mem_multiples_iff_mem_zmultiples
mem_multiples_iff_mem_range_addOrderOf
mono 📖IsOfFinAddOrder
addOrderOf
addOrderOf_pos_iff
multiples_eq_image_range_addOrderOf 📖mathematicalIsOfFinAddOrderSetLike.coe
AddSubmonoid
AddMonoid.toAddZeroClass
AddSubmonoid.instSetLike
AddSubmonoid.multiples
Finset
Finset.instSetLike
Finset.image
AddMonoid.toNatSMul
Finset.range
addOrderOf
Set.ext
mem_multiples_iff_mem_range_addOrderOf
multiples_eq_zmultiples 📖mathematicalIsOfFinAddOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SetLike.coe
AddSubmonoid
AddMonoid.toAddZeroClass
AddSubmonoid.instSetLike
AddSubmonoid.multiples
AddSubgroup
AddSubgroup.instSetLike
AddSubgroup.zmultiples
Set.ext
mem_multiples_iff_mem_zmultiples
natCard_multiples_le_addOrderOf 📖mathematicalIsOfFinAddOrderNat.card
Set.Elem
SetLike.coe
AddSubmonoid
AddMonoid.toAddZeroClass
AddSubmonoid.instSetLike
AddSubmonoid.multiples
addOrderOf
multiples_eq_image_range_addOrderOf
Finset.coe_image
Finset.coe_range
Nat.card_eq_fintype_card
Fintype.card_ofFinset
Set.toFinset_Iio
Nat.Iio_eq_range
Finset.card_range
Finset.card_image_le
neg 📖mathematicalIsOfFinAddOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
isOfFinAddOrder_neg_iff
nsmul 📖mathematicalIsOfFinAddOrderAddMonoid.toNatSMulisOfFinAddOrder_iff_nsmul_eq_zero
nsmul_left_comm
nsmul_zero
nsmul_eq_nsmul_iff_modEq 📖mathematicalIsOfFinAddOrderAddMonoid.toNatSMul
Nat.ModEq
addOrderOf
add_nsmul
IsAddUnit.add_eq_left
IsAddUnit.nsmul
isAddUnit
nsmul_eq_zero_iff_modEq
Nat.ModEq.add_left
Nat.ModEq.add_left_cancel'
Nat.ModEq.comm
le_of_not_ge
nsmul_inj_mod 📖mathematicalIsOfFinAddOrderAddMonoid.toNatSMul
addOrderOf
nsmul_eq_nsmul_iff_modEq
of_mem_zmultiples 📖IsOfFinAddOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
AddSubgroup.mem_zmultiples_iff
zsmul
of_neg 📖IsOfFinAddOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
isOfFinAddOrder_neg_iff
of_nsmul 📖IsOfFinAddOrder
AddMonoid.toNatSMul
isOfFinAddOrder_iff_nsmul_eq_zero
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Ne.bot_lt
mul_nsmul
pi 📖mathematicalIsOfFinAddOrderPi.addMonoidaddOrderOf_ne_zero_iff
Pi.addOrderOf
addOrderOf_eq_zero_iff
Finset.lcm_eq_zero_iff
Nat.instNontrivial
Finset.mem_univ
prod_mk 📖mathematicalIsOfFinAddOrderProd.instAddMonoidaddOrderOf_pos_iff
Prod.addOrderOf
snd 📖IsOfFinAddOrder
Prod.instAddMonoid
mono
addOrderOf_snd_dvd_addOrderOf
val_addUnit 📖mathematicalIsOfFinAddOrderAddUnits.val
addUnit
val_neg_addUnit 📖mathematicalIsOfFinAddOrderAddUnits.val
AddUnits
AddUnits.instNeg
addUnit
AddMonoid.toNatSMul
addOrderOf
zero 📖mathematicalIsOfFinAddOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
isOfFinAddOrder_iff_nsmul_eq_zero
nsmul_zero
zsmul 📖mathematicalIsOfFinAddOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SubNegMonoid.toZSMulisOfFinAddOrder_iff_nsmul_eq_zero
addOrderOf_pos
zsmul_smul_addOrderOf

IsOfFinOrder

Definitions

NameCategoryTheorems
groupPowers 📖CompOp
unit 📖CompOp
2 mathmath: val_inv_unit, val_unit

Theorems

NameKindAssumesProvesValidatesDepends On
apply 📖IsOfFinOrder
Pi.monoid
exists_pow_eq_one
isOfFinOrder_iff_pow_eq_one
eq_neg_one 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
IsOfFinOrder
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
sq_eq_one_iff
IsStrictOrderedRing.noZeroDivisors
AddGroup.existsAddOfLE
eq_one
sq_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
pow
LT.lt.not_ge
one_pos
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
eq_one 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
IsOfFinOrder
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
exists_pow_eq_one
pow_eq_one_iff_of_nonneg
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
LT.lt.ne'
eq_one' 📖mathematicalIsOfFinOrderMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
Mathlib.Tactic.Contrapose.contrapose₁
not_isOfFinOrder_of_isMulTorsionFree
exists_pow_eq_one 📖mathematicalIsOfFinOrderMonoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
isOfFinOrder_iff_pow_eq_one
finite_powers 📖mathematicalIsOfFinOrderSet.Finite
SetLike.coe
Submonoid
Monoid.toMulOneClass
Submonoid.instSetLike
Submonoid.powers
powers_eq_image_range_orderOf
Finset.finite_toSet
fst 📖IsOfFinOrder
Prod.instMonoid
mono
orderOf_fst_dvd_orderOf
inv 📖mathematicalIsOfFinOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
isOfFinOrder_inv_iff
isUnit 📖mathematicalIsOfFinOrderIsUnit
mem_powers_iff_mem_range_orderOf 📖mathematicalIsOfFinOrderSubmonoid
Monoid.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
Submonoid.powers
Finset
Finset.instMembership
Finset.image
Monoid.toNatPow
Finset.range
orderOf
Finset.mem_range_iff_mem_finset_range_of_mod_eq'
orderOf_pos
pow_mod_orderOf
mem_powers_iff_mem_zpowers 📖mathematicalIsOfFinOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Submonoid
Monoid.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
Submonoid.powers
Subgroup
Subgroup.instSetLike
Subgroup.zpowers
zpow_natCast
orderOf_pos
zpow_mod_orderOf
mem_zpowers_iff_mem_range_orderOf 📖mathematicalIsOfFinOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
Finset
Finset.instMembership
Finset.image
Monoid.toNatPow
Finset.range
orderOf
mem_powers_iff_mem_zpowers
mem_powers_iff_mem_range_orderOf
mono 📖IsOfFinOrder
orderOf
orderOf_pos_iff
mul 📖mathematicalIsOfFinOrder
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Commute.isOfFinOrder_mul
Commute.all
natCard_powers_le_orderOf 📖mathematicalIsOfFinOrderNat.card
Set.Elem
SetLike.coe
Submonoid
Monoid.toMulOneClass
Submonoid.instSetLike
Submonoid.powers
orderOf
powers_eq_image_range_orderOf
Finset.coe_image
Finset.coe_range
Nat.card_eq_fintype_card
Fintype.card_ofFinset
Set.toFinset_Iio
Nat.Iio_eq_range
Finset.card_range
Finset.card_image_le
of_inv 📖IsOfFinOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
isOfFinOrder_inv_iff
of_mem_zpowers 📖IsOfFinOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
Subgroup.mem_zpowers_iff
zpow
of_pow 📖IsOfFinOrder
Monoid.toNatPow
isOfFinOrder_iff_pow_eq_one
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Ne.bot_lt
pow_mul
one 📖mathematicalIsOfFinOrder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
isOfFinOrder_iff_pow_eq_one
one_pow
orderOf_pos 📖mathematicalIsOfFinOrderorderOfFunction.minimalPeriod_pos_of_mem_periodicPts
orderOf_pow 📖mathematicalIsOfFinOrderorderOf
Monoid.toNatPow
Function.minimalPeriod_iterate_eq_div_gcd'
mul_left_iterate
pi 📖mathematicalIsOfFinOrderPi.monoidPi.orderOf
Nat.instNontrivial
pow 📖mathematicalIsOfFinOrderMonoid.toNatPowpow_right_comm
one_pow
pow_eq_pow_iff_modEq 📖mathematicalIsOfFinOrderMonoid.toNatPow
Nat.ModEq
orderOf
pow_add
IsUnit.mul_eq_left
IsUnit.pow
isUnit
pow_eq_one_iff_modEq
Nat.ModEq.add_left
Nat.ModEq.add_left_cancel'
Nat.ModEq.comm
le_of_not_ge
pow_inj_mod 📖mathematicalIsOfFinOrderMonoid.toNatPow
orderOf
pow_eq_pow_iff_modEq
powers_eq_image_range_orderOf 📖mathematicalIsOfFinOrderSetLike.coe
Submonoid
Monoid.toMulOneClass
Submonoid.instSetLike
Submonoid.powers
Finset
Finset.instSetLike
Finset.image
Monoid.toNatPow
Finset.range
orderOf
Set.ext
mem_powers_iff_mem_range_orderOf
powers_eq_zpowers 📖mathematicalIsOfFinOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.coe
Submonoid
Monoid.toMulOneClass
Submonoid.instSetLike
Submonoid.powers
Subgroup
Subgroup.instSetLike
Subgroup.zpowers
Set.ext
mem_powers_iff_mem_zpowers
prod_mk 📖mathematicalIsOfFinOrderProd.instMonoidProd.orderOf
snd 📖IsOfFinOrder
Prod.instMonoid
mono
orderOf_snd_dvd_orderOf
val_inv_unit 📖mathematicalIsOfFinOrderUnits.val
Units
Units.instInv
unit
Monoid.toNatPow
orderOf
val_unit 📖mathematicalIsOfFinOrderUnits.val
unit
zpow 📖mathematicalIsOfFinOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivInvMonoid.toZPowisOfFinOrder_iff_pow_eq_one
orderOf_pos
zpow_pow_orderOf

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
isOfFinOrder 📖mathematicalIsUnitIsOfFinOrderisOfFinOrder_iff_isUnit
orderOf_eq_one 📖mathematicalIsUnitorderOfisUnit_iff_eq_one
orderOf_one

LinearOrderedRing

Theorems

NameKindAssumesProvesValidatesDepends On
orderOf_le_two 📖mathematicalorderOf
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
ne_or_eq
orderOf_abs_ne_one
Nat.instCanonicallyOrderedAdd
eq_or_eq_neg_of_abs_eq
orderOf_one
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
orderOf_le_of_pow_eq_one
zero_lt_two
Even.neg_pow
one_pow

MonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
isOfFinOrder 📖mathematicalIsOfFinOrderDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLike
isOfFinOrder_iff_pow_eq_one
IsOfFinOrder.exists_pow_eq_one
map_pow
map_one

MulEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
orderOf_eq 📖mathematicalorderOf
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
instEquivLike
orderOf_injective
injective

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
card_addSubmonoidMultiples 📖mathematicalcard
AddSubmonoid
AddMonoid.toAddZeroClass
AddLeftCancelMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.multiples
addOrderOf
card_congr
card_eq_fintype_card
Fintype.card_fin
Set.Infinite.to_subtype
infinite_multiples
addOrderOf_eq_zero
card_eq_zero_of_infinite
card_submonoidPowers 📖mathematicalcard
Submonoid
Monoid.toMulOneClass
LeftCancelMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
Submonoid.powers
orderOf
card_congr
card_eq_fintype_card
Fintype.card_fin
Set.Infinite.to_subtype
infinite_powers
orderOf_eq_zero
card_eq_zero_of_infinite
cast_card_eq_zero 📖mathematicalAddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Fintype.card
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddGroupWithOne.toAddGroup
nsmul_one
card_nsmul_eq_zero

Nat.Coprime

Theorems

NameKindAssumesProvesValidatesDepends On
addOrderOf_nsmul 📖mathematicaladdOrderOfAddMonoid.toNatSMulIsOfFinAddOrder.addOrderOf_nsmul
addOrderOf_eq_zero
one_nsmul
nsmul_right_bijective 📖mathematicalNat.cardFunction.Bijective
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Equiv.bijective
orderOf_pow 📖mathematicalorderOfMonoid.toNatPowIsOfFinOrder.orderOf_pow
orderOf_eq_zero
pow_one
pow_left_bijective 📖mathematicalNat.cardFunction.Bijective
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.bijective

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
addOrderOf 📖mathematicaladdOrderOf
addMonoid
Finset.lcm
Nat.instCommMonoidWithZero
instNormalizedGCDMonoidNat
Finset.univ
Function.minimalPeriod_piMap_fintype
addOrderOf_eq_sInf 📖mathematicaladdOrderOf
addMonoid
InfSet.sInf
Nat.instInfSet
setOf
Function.minimalPeriod_piMap
orderOf 📖mathematicalorderOf
monoid
Finset.lcm
Nat.instCommMonoidWithZero
instNormalizedGCDMonoidNat
Finset.univ
Function.minimalPeriod_piMap_fintype
orderOf_eq_sInf 📖mathematicalorderOf
monoid
InfSet.sInf
Nat.instInfSet
setOf
Function.minimalPeriod_piMap

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
addOrderOf 📖mathematicaladdOrderOf
instAddMonoid
Function.minimalPeriod_prodMap
addOrderOf_mk 📖mathematicaladdOrderOf
instAddMonoid
addOrderOf
orderOf 📖mathematicalorderOf
instMonoid
Function.minimalPeriod_prodMap
orderOf_mk 📖mathematicalorderOf
instMonoid
orderOf

SemiconjBy

Theorems

NameKindAssumesProvesValidatesDepends On
orderOf_eq 📖mathematicalSemiconjBy
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
orderOforderOf_eq_orderOf_iff
eq_one_iff
pow_right

Subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
closure_toSubmonoid_of_finite 📖mathematicaltoSubmonoid
closure
Submonoid.closure
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
closure_toSubmonoid_of_isOfFinOrder
closure_toSubmonoid_of_isOfFinOrder 📖mathematicalIsOfFinOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toSubmonoid
closure
Submonoid.closure
Monoid.toMulOneClass
le_antisymm
closure_toSubmonoid
Submonoid.closure_le
Set.union_subset
Submonoid.subset_closure
Submonoid.powers_le
IsOfFinOrder.mem_powers_iff_mem_zpowers
zpowers_inv
le_closure_toSubmonoid
orderOf_coe 📖mathematicalorderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup
SetLike.instMembership
instSetLike
toGroup
orderOf_injective
Subtype.coe_injective
orderOf_dvd_natCard 📖mathematicalSubgroup
SetLike.instMembership
instSetLike
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Nat.card
orderOf_dvd_natCard
orderOf_le_card 📖mathematicalSubgroup
SetLike.instMembership
instSetLike
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Nat.card
Nat.card_pos_iff
Set.Nonempty.to_subtype
coe_nonempty
Set.Finite.to_subtype
orderOf_dvd_natCard
orderOf_mk 📖mathematicalSubgroup
SetLike.instMembership
instSetLike
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toGroup
orderOf_coe
pow_index_mem 📖mathematicalSubgroup
SetLike.instMembership
instSetLike
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
index
QuotientGroup.eq_one_iff
QuotientGroup.mk_pow
index.eq_1
pow_card_eq_one'
zpowers_eq_zpowers_iff 📖mathematicalIsOfFinOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
zpowers
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
mem_zpowers_iff
injective_zpow_iff_not_isOfFinOrder
zpow_one
zpow_mul
Int.mul_eq_one_iff_eq_one_or_neg_one
zpow_neg
zpowers_inv

Submonoid

Theorems

NameKindAssumesProvesValidatesDepends On
isOfFinOrder_coe 📖mathematicalIsOfFinOrder
Submonoid
Monoid.toMulOneClass
SetLike.instMembership
instSetLike
toMonoid
isOfFinOrder_iff_pow_eq_one
instSubmonoidClass
SubmonoidClass.toOneMemClass
orderOf_le_card 📖mathematicalSubmonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.instMembership
instSetLike
orderOf
Nat.card
Nat.card_submonoidPowers
Nat.card_mono
powers_le

Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
addOrderOf_eq 📖mathematicaladdOrderOfFunction.minimalPeriod_eq_one_of_subsingleton
orderOf_eq 📖mathematicalorderOfFunction.minimalPeriod_eq_one_of_subsingleton

Units

Theorems

NameKindAssumesProvesValidatesDepends On
isOfFinOrder_val 📖mathematicalIsOfFinOrder
val
Units
instMonoid
Function.Injective.isOfFinOrder_iff
coeHom_injective

(root)

Definitions

NameCategoryTheorems
IsOfFinAddOrder 📖MathDef
29 mathmath: AddCircle.not_isOfFinAddOrder_iff_forall_rat_ne_div, addOrderOf_eq_zero_iff, AddUnits.isOfFinAddOrder_val, injective_zsmul_iff_not_isOfFinAddOrder, AddMonoid.ExponentExists.isOfFinAddOrder, AddCircle.isOfFinAddOrder_iff_exists_rat_eq_div, AddMonoid.not_isTorsion_iff, isAddTorsionFree_iff_not_isOfFinAddOrder, not_isOfFinAddOrder_of_injective_nsmul, isOfFinOrder_ofAdd_iff, not_isAddTorsionFree_iff_isOfFinAddOrder, IsOfFinAddOrder.zero, infinite_zmultiples, infinite_multiples, addOrderOf_ne_zero_iff, isOfFinAddOrder_neg_iff, not_isOfFinAddOrder_of_isAddTorsionFree, isOfFinAddOrder_nsmul, isOfFinAddOrder_ofMul_iff, addOrderOf_pos_iff, finite_multiples, AddCommGroup.mem_torsion, AddSubmonoid.isOfFinAddOrder_coe, Function.Injective.isOfFinAddOrder_iff, isOfFinAddOrder_iff_zsmul_eq_zero, injective_nsmul_iff_not_isOfFinAddOrder, isOfFinAddOrder_of_finite, isOfFinAddOrder_iff_nsmul_eq_zero, finite_zmultiples
IsOfFinOrder 📖MathDef
31 mathmath: not_isOfFinOrder_of_isMulTorsionFree, finite_powers, finite_zpowers, Units.isOfFinOrder_val, isOfFinOrder_inv_iff, isOfFinOrder_iff_zpow_eq_one, not_isMulTorsionFree_iff_isOfFinOrder, LinearEquiv.isOfFinOrder_of_finite_of_span_eq_top_of_mapsTo, infinite_zpowers, orderOf_eq_zero_iff, isOfFinOrder_ofAdd_iff, Monoid.ExponentExists.isOfFinOrder, isOfFinOrder_pow, orderOf_ne_zero_iff, Monoid.not_isTorsion_iff, isOfFinOrder_of_finite, isOfFinAddOrder_ofMul_iff, Submonoid.isOfFinOrder_coe, not_isOfFinOrder_of_injective_pow, IsUnit.isOfFinOrder, orderOf_pos_iff, IsPrimitiveRoot.isOfFinOrder, CommGroup.mem_torsion, isMulTorsionFree_iff_not_isOfFinOrder, injective_zpow_iff_not_isOfFinOrder, isOfFinOrder_iff_pow_eq_one, IsOfFinOrder.one, isOfFinOrder_iff_isUnit, Function.Injective.isOfFinOrder_iff, infinite_powers, injective_pow_iff_not_isOfFinOrder
addOrderOf 📖CompOp
142 mathmath: ZMod.addOrderOf_coe, mod_addOrderOf_nsmul, AddCommute.exists_addOrderOf_eq_lcm, addOrderOf_dvd_sub_iff_zsmul_eq_zsmul, AddCircle.exists_gcd_eq_one_of_isOfFinAddOrder, AddSubmonoid.addOrderOf_le_card, addOrderOf_eq_card_multiples, nsmul_finEquivZMultiples_symm_apply, addOrderOf_addSubmonoid, addOrderOf_eq_zero_iff, orderOf_ofAdd_eq_addOrderOf, addOrderOf_neg, IsAddUnit.addOrderOf_eq_zero, Pi.addOrderOf, IsAddCyclic.image_range_addOrderOf, nsmul_inj_mod, Nat.card_zmultiples, Prod.addOrderOf, AddMonoid.minOrder_le_addOrderOf, image_range_addOrderOf, mem_zmultiples_nsmul_iff, addOrderOf_eq_prime, addOrderOf_pos, IsOfFinAddOrder.mem_zmultiples_iff_mem_range_addOrderOf, IsAddCyclic.exists_ofOrder_eq_natCard, Pi.addOrderOf_eq_sInf, AddMonoid.exists_addOrderOf_eq_exponent, addOrderOf_addUnits, AddSemiconjBy.addOrderOf_eq, addOrderOf_le_card_univ, AddCommMonoid.primaryComponent.exists_orderOf_eq_prime_nsmul, AddMonoid.addOrderOf_eq_one_iff, nsmul_eq_nsmul_iff_modEq, AddCommute.addOrderOf_add_dvd_mul_addOrderOf, addOrderOf_eq_two_iff, addOrderOf_zero, IsOfFinAddOrder.addOrderOf_pos, AddMonoid.le_minOrder, IsOfFinAddOrder.addOrderOf_nsmul, addOrderOf_fst_dvd_addOrderOf, AddMonoid.exponent_eq_max'_addOrderOf, AddCircle.denseRange_zsmul_iff, AddMonoid.exponent_eq_prime_iff, AddCircle.ergodic_add_left, Infinite.addOrderOf_eq_zero_of_forall_mem_zmultiples, AddCircle.addOrderOf_div_of_gcd_eq_one, AddCircle.ergodic_add_right, addOrderOf_ofMul_eq_orderOf, addOrderOf_dvd_of_nsmul_eq_zero, IsOfFinAddOrder.natCard_multiples_le_addOrderOf, AddMonoid.exponent_dvd, addOrderOf_dvd_card, CharacterModule.intSpanEquivQuotAddOrderOf_symm_apply_coe, addOrderOf_le_of_nsmul_eq_zero, exists_addOrderOf_eq_prime_pow_iff, AddCircle.finite_setOf_addOrderOf_eq, CharacterModule.intSpanEquivQuotAddOrderOf_apply, zmultiplesHom_ker_eq, addOrderOf_injective, mem_approx_add_orderOf_iff, AddCommMonoid.coe_primaryComponent, IsOfFinAddOrder.val_neg_addUnit, AddCommute.addOrderOf_add_nsmul_eq_lcm, CharP.addOrderOf_one, AddCircle.card_addOrderOf_eq_totient, AddCommute.addOrderOf_add_dvd_lcm, IsOfFinAddOrder.nsmul_eq_nsmul_iff_modEq, finEquivMultiples_symm_apply, addOrderOf_eq_card_of_forall_mem_multiples, AddCircle.exists_norm_eq_of_isOfFinAddOrder, addOrderOf_nsmul', addOrderOf_dvd_natCard, addOrderOf_le_card, mod_addOrderOf_zsmul, AddCommute.addOrderOf_dvd_lcm_add, AddSubgroup.addOrderOf_coe, Nat.card_addSubmonoidMultiples, AddMonoid.addOrderOf_le_exponent, addOrderOf_dvd_of_mem_zmultiples, finEquivZMultiples_apply, exists_prime_addOrderOf_dvd_card, AddCircle.le_add_order_smul_norm_of_isOfFinAddOrder, addOrderOf_eq_card_of_forall_mem_zmultiples, IsAddCyclic.card_addOrderOf_eq_totient, finEquivZMultiples_symm_apply, addOrderOf_dvd_iff_nsmul_eq_zero, AddMonoid.ExponentExists.addOrderOf_pos, AddCommGroup.coe_primaryComponent, IsOfFinAddOrder.mem_multiples_iff_mem_range_addOrderOf, AddEquiv.addOrderOf_eq, addOrderOf_eq_card_of_zmultiples_eq_top, exists_prime_addOrderOf_dvd_card', addOrderOf_nsmul_eq_zero, zsmul_smul_addOrderOf, nsmul_eq_zero_iff_modEq, addOrderOf_eq_iff, ZMod.addOrderOf_coe', AddSubgroup.addOrderOf_dvd_natCard, addOrderOf_pos_iff, mem_zmultiples_iff_mem_range_addOrderOf, AddAction.period_dvd_addOrderOf, AddMonoid.exponent_eq_iSup_addOrderOf', finEquivMultiples_apply, IsOfFinAddOrder.multiples_eq_image_range_addOrderOf, addOrderOf_dvd_iff_zsmul_eq_zero, addOrderOf_eq_zero_iff', isAddCyclic_iff_exists_addOrderOf_eq_natCard, AddCircle.addOrderOf_eq_pos_iff, mem_zmultiples_zsmul_iff, Fintype.card_zmultiples, AddMonoid.lcm_addOrderOf_eq_exponent, addOrderOf_smul_dvd, card_addOrderOf_eq_totient_aux₂, addOrderOf_snd_dvd_addOrderOf, AddCircle.addOrderOf_period_div, Prod.addOrderOf_mk, ZMod.addOrderOf_one, AddCircle.addOrderOf_div_of_gcd_eq_one', isAddCyclic_iff_exists_natCard_le_addOrderOf, mem_multiples_iff_mem_range_addOrderOf, CharacterModule.intSpanEquivQuotAddOrderOf_apply_self, addOrderOf_eq_prime_iff, zsmul_eq_zsmul_iff_modEq, AddCircle.addOrderOf_coe_rat, Subsingleton.addOrderOf_eq, Nat.Prime.exists_addOrderOf_eq_pow_padic_val_nat_add_exponent, sum_card_addOrderOf_eq_card_nsmul_eq_zero, AddSubgroup.addOrderOf_mk, AddMonoid.lcm_addOrderOf_dvd_exponent, zsmul_eq_zero_iff_modEq, addOrderOf_nsmul, IsOfFinAddOrder.nsmul_inj_mod, addOrderOf_eq_prime_pow, addOrderOf_map_dvd, AddSubgroup.addOrderOf_le_card, addOrderOf_eq_zero, nsmul_injOn_Iio_addOrderOf, addOrderOf_eq_addOrderOf_iff, addOrderOf_eq_of_nsmul_and_div_prime_nsmul, AddCircle.gcd_mul_addOrderOf_div_eq, AddMonoid.addOrder_dvd_exponent, addOrderOf_apply_dvd_addOrderOf
addSubgroupOfIdempotent 📖CompOp
addSubmonoidOfIdempotent 📖CompOp
finEquivMultiples 📖CompOp
2 mathmath: finEquivMultiples_symm_apply, finEquivMultiples_apply
finEquivPowers 📖CompOp
2 mathmath: finEquivPowers_apply, finEquivPowers_symm_apply
finEquivZMultiples 📖CompOp
3 mathmath: nsmul_finEquivZMultiples_symm_apply, finEquivZMultiples_apply, finEquivZMultiples_symm_apply
finEquivZPowers 📖CompOp
3 mathmath: finEquivZPowers_symm_apply, pow_finEquivZPowers_symm_apply, finEquivZPowers_apply
multiplesEquivMultiples 📖CompOp
1 mathmath: multiplesEquivMultiples_apply
nsmulCoprime 📖CompOp
4 mathmath: nsmulCoprime_neg, nsmulCoprime_symm_apply, nsmulCoprime_zero, nsmulCoprime_apply
orderOf 📖CompOp
186 mathmath: orderOf_map_dvd, orderOf_lt_card, Monoid.exists_orderOf_eq_exponent, Nat.Prime.exists_orderOf_eq_pow_factorization_exponent, mem_zpowers_iff_mem_range_orderOf, IsOfFinOrder.natCard_powers_le_orderOf, DihedralGroup.orderOf_r, IsPrimitiveRoot.eq_orderOf, IsCyclic.image_range_orderOf, orderOf_eq_card_of_forall_mem_zpowers, QuaternionGroup.orderOf_a_one, MulChar.exists_mulChar_orderOf, finEquivZPowers_symm_apply, orderOf_dvd_of_mem_zpowers, orderOf_ofAdd_eq_addOrderOf, ZMod.orderOf_one_add_mul_prime, finEquivPowers_apply, IsPrimitiveRoot.orderOf, IsOfFinOrder.orderOf_pos, Commute.orderOf_mul_dvd_mul_orderOf, minpoly_algHom_toLinearMap, Subsingleton.orderOf_eq, Equiv.Perm.IsCycle.pow_iff, orderOf_pow_dvd, zpow_mod_orderOf, FiniteField.orderOf_frobeniusAlgEquivOfAlgebraic, orderOf_eq_card_of_forall_mem_powers, Polynomial.natDegree_of_dvd_cyclotomic_of_irreducible, pow_mod_orderOf, orderOf_le_card, orderOf_units, orderOf_le_card_univ, Commute.exists_orderOf_eq_lcm, Commute.orderOf_dvd_lcm_mul, orderOf_eq_of_pow_and_pow_div_prime, IsOfFinOrder.orderOf_pow, isCyclic_iff_exists_natCard_le_orderOf, Monoid.exponent_dvd, pow_finEquivZPowers_symm_apply, NumberField.IsCMField.orderOf_complexConj, orderOf_zero, Monoid.ExponentExists.orderOf_pos, mem_approxOrderOf_iff, MulChar.orderOf_dvd_card_sub_one, zpow_eq_one_iff_modEq, orderOf_submonoid, CommGroup.coe_primaryComponent, Subgroup.orderOf_mk, Equiv.Perm.SameCycle.exists_pow_eq', zpow_pow_orderOf, IsPGroup.orderOf_coprime, IsCyclotomicExtension.Rat.inertiaDegIn_of_not_dvd, orderOf_pow', Equiv.Perm.SameCycle.exists_fin_pow_eq, orderOf_dvd_natCard, pow_injOn_Iio_orderOf, orderOf_dvd_of_pow_eq_one, CharP.orderOf_eq_two_iff, IsOfFinOrder.mem_powers_iff_mem_range_orderOf, orderOf_one, addOrderOf_ofMul_eq_orderOf, Monoid.order_dvd_exponent, orderOf_eq_zero_iff, IsCyclic.exists_ofOrder_eq_natCard, orderOf_eq_prime, IsOfFinOrder.mem_zpowers_iff_mem_range_orderOf, orderOf_eq_iff, MulChar.exists_mulChar_orderOf_eq_card_units, Equiv.Perm.IsSwap.orderOf, pow_eq_pow_iff_modEq, orderOf_dvd_card, orderOf_eq_prime_iff, Nat.card_submonoidPowers, mem_powers_iff_mem_range_orderOf, QuaternionGroup.orderOf_xa, QuaternionGroup.orderOf_a, isCyclic_iff_exists_orderOf_eq_natCard, Monoid.lcm_orderOf_eq_exponent, Monoid.lcm_orderOf_dvd_exponent, Equiv.Perm.IsCycle.support_pow_eq_iff, orderOf_eq_prime_pow, DihedralGroup.orderOf_sr, DihedralGroup.orderOf_r_one, IsCyclotomicExtension.Rat.inertiaDeg_eq, Equiv.Perm.IsCycle.orderOf, Equiv.Perm.lcm_cycleType, IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_not_dvd, orderOf_snd_dvd_orderOf, orderOf_pow, Commute.orderOf_mul_dvd_lcm, exists_prime_orderOf_dvd_card, MonoidHom.FixedPointFree.odd_orderOf_of_involutive, Pi.orderOf, exists_orderOf_eq_prime_pow_iff, ZMod.orderOf_one_add_four_mul, pow_orderOf_eq_one, mem_zpowers_pow_iff, IsPrimitiveRoot.iff_orderOf, IsUnit.orderOf_eq_one, orderOf_fst_dvd_orderOf, Prod.orderOf_mk, Pi.orderOf_eq_sInf, IsOfFinOrder.pow_inj_mod, orderOf_eq_card_powers, IsCyclic.card_orderOf_eq_totient, orderOf_piMulSingle, ZMod.orderOf_one_add_prime, Monoid.exponent_eq_max'_orderOf, IsPGroup.powEquiv_symm_apply, gaussSum_mul_gaussSum_pow_orderOf_sub_one, SemiconjBy.orderOf_eq, LucasLehmer.order_ω, orderOf_neg_one, Nat.card_zpowers, MulEquiv.orderOf_eq, Equiv.Perm.dvd_of_mem_cycleType, exists_prime_orderOf_dvd_card', IsCyclotomicExtension.Rat.inertiaDegIn_eq, mem_zpowers_zpow_iff, ZMod.orderOf_dvd_card_sub_one, orderOf_eq_card_of_zpowers_eq_top, ZMod.orderOf_one_add_mul_prime_pow, MulChar.orderOf_pos, finEquivZPowers_apply, card_orderOf_eq_totient_aux₂, Infinite.orderOf_eq_zero_of_forall_mem_zpowers, Equiv.Perm.IsThreeCycle.orderOf, orderOf_dvd_sub_iff_zpow_eq_zpow, minpoly_algEquiv_toLinearMap, image_range_orderOf, orderOf_pos_iff, orderOf_dvd_iff_zpow_eq_one, ZMod.orderOf_lt, orderOf_eq_zero_iff_eq_zero, ZMod.orderOf_five, IsOfFinOrder.pow_eq_pow_iff_modEq, Monoid.exponent_eq_prime_iff, Polynomial.natDegree_of_mem_normalizedFactors_cyclotomic, IsOfFinOrder.powers_eq_image_range_orderOf, Polynomial.orderOf_root_cyclotomic_dvd, orderOf_inv, IsOfFinOrder.val_inv_unit, orderOf_eq_zero_iff', IsPGroup.iff_orderOf, zpowersHom_ker_eq, Equiv.Perm.Disjoint.orderOf, CommMonoid.primaryComponent.exists_orderOf_eq_prime_pow, Equiv.Perm.orderOf_cycleOf_dvd_orderOf, zpow_eq_zpow_iff_modEq, IsCyclotomicExtension.Rat.inertiaDeg_of_not_dvd, Subgroup.orderOf_le_card, MulAction.period_dvd_orderOf, Subgroup.orderOf_dvd_natCard, Equiv.Perm.pow_mod_orderOf_cycleOf_apply, MulChar.apply_mem_rootsOfUnity_orderOf, Monoid.le_minOrder, orderOf_eq_zero, FiniteField.orderOf_frobeniusAlgHom, IsCyclotomicExtension.Rat.inertiaDeg_eq_of_not_dvd, Fintype.card_zpowers, orderOf_dvd_iff_pow_eq_one, orderOf_pos, Equiv.Perm.SameCycle.exists_pow_eq'', ZMod.orderOf_units_dvd_card_sub_one, sum_card_orderOf_eq_card_pow_eq_one, orderOf_apply_dvd_orderOf, orderOf_injective, orderOf_eq_one_iff, Monoid.minOrder_le_orderOf, Monoid.exponent_eq_iSup_orderOf', orderOf_le_of_pow_eq_one, finEquivPowers_symm_apply, Polynomial.normalizedFactors_cyclotomic_card, NumberField.ComplexEmbedding.orderOf_isConj_two_of_ne_one, Prod.orderOf, orderOf_abs_ne_one, orderOf_eq_orderOf_iff, pow_eq_one_iff_modEq, Subgroup.orderOf_coe, Submonoid.orderOf_le_card, Monoid.orderOf_le_exponent, LinearOrderedRing.orderOf_le_two, orderOf_eq_two_iff, Commute.orderOf_mul_pow_eq_lcm, CommMonoid.coe_primaryComponent, pow_inj_mod
powCardSubgroup 📖CompOp
1 mathmath: coe_powCardSubgroup
powCoprime 📖CompOp
4 mathmath: powCoprime_symm_apply, powCoprime_inv, powCoprime_one, powCoprime_apply
powersEquivPowers 📖CompOp
1 mathmath: powersEquivPowers_apply
smulCardAddSubgroup 📖CompOp
1 mathmath: coe_smulCardAddSubgroup
subgroupOfIdempotent 📖CompOp
submonoidOfIdempotent 📖CompOp
zmultiplesEquivZMultiples 📖CompOp
1 mathmath: zmultiples_equiv_zmultiples_apply
zpowersEquivZPowers 📖CompOp
1 mathmath: zpowersEquivZPowers_apply

Theorems

NameKindAssumesProvesValidatesDepends On
addOrderOf_addSubmonoid 📖mathematicaladdOrderOf
AddSubmonoid
AddMonoid.toAddZeroClass
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.toAddMonoid
addOrderOf_injective
Subtype.coe_injective
addOrderOf_addUnits 📖mathematicaladdOrderOf
AddUnits.val
AddUnits
AddUnits.instAddMonoid
addOrderOf_injective
AddUnits.val_injective
addOrderOf_apply_dvd_addOrderOf 📖mathematicaladdOrderOf
Pi.addMonoid
Function.minimalPeriod_single_dvd_minimalPeriod_piMap
addOrderOf_dvd_card 📖mathematicaladdOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Fintype.card
Fintype.card_zmultiples
mul_comm
Fintype.card_prod
Fintype.card_congr
addOrderOf_dvd_iff_nsmul_eq_zero 📖mathematicaladdOrderOf
AddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
mod_addOrderOf_nsmul
zero_nsmul
addOrderOf_dvd_of_nsmul_eq_zero
addOrderOf_dvd_iff_zsmul_eq_zero 📖mathematicaladdOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SubNegMonoid.toZSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
addOrderOf_dvd_iff_nsmul_eq_zero
natCast_zsmul
dvd_neg
neg_zsmul
neg_eq_zero
addOrderOf_dvd_natCard 📖mathematicaladdOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Nat.card
Nat.card_eq_fintype_card
addOrderOf_dvd_card
Nat.card_eq_zero_of_infinite
dvd_zero
addOrderOf_dvd_of_mem_zmultiples 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup.mem_zmultiples_iff
addOrderOf_dvd_iff_nsmul_eq_zero
zsmul_smul_addOrderOf
addOrderOf_dvd_of_nsmul_eq_zero 📖mathematicalAddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addOrderOfFunction.IsPeriodicPt.minimalPeriod_dvd
isPeriodicPt_add_iff_nsmul_eq_zero
addOrderOf_dvd_sub_iff_zsmul_eq_zsmul 📖mathematicaladdOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SubNegMonoid.toZSMul
addOrderOf_dvd_iff_zsmul_eq_zero
sub_zsmul
add_neg_eq_zero
addOrderOf_eq_addOrderOf_iff 📖mathematicaladdOrderOf
AddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
isPeriodicPt_add_iff_nsmul_eq_zero
Function.minimalPeriod_eq_minimalPeriod_iff
addOrderOf_eq_card_multiples 📖mathematicaladdOrderOf
AddLeftCancelMonoid.toAddMonoid
Fintype.card
AddSubmonoid
AddMonoid.toAddZeroClass
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.multiples
AddSubmonoid.fintypeMultiples
Fintype.card_fin
Fintype.card_eq
isOfFinAddOrder_of_finite
Finite.of_fintype
addOrderOf_eq_iff 📖mathematicaladdOrderOf
AddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
isPeriodicPt_add_iff_nsmul_eq_zero
Nat.find_eq_iff
LT.lt.ne
addOrderOf_eq_of_nsmul_and_div_prime_nsmul 📖mathematicalAddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addOrderOfexists_eq_mul_right_of_dvd
addOrderOf_dvd_of_nsmul_eq_zero
exists_eq_mul_left_of_dvd
Nat.minFac_dvd
Dvd.intro_left
mul_assoc
Nat.minFac_prime
addOrderOf_dvd_iff_nsmul_eq_zero
mul_comm
IsOfFinAddOrder.addOrderOf_pos
isOfFinAddOrder_iff_nsmul_eq_zero
mul_one
addOrderOf_eq_prime 📖mathematicalAddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addOrderOfaddOrderOf_eq_prime_iff
addOrderOf_eq_prime_iff 📖mathematicaladdOrderOf
AddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addOrderOf.eq_1
Function.minimalPeriod_eq_prime_iff
isPeriodicPt_add_iff_nsmul_eq_zero
Function.IsFixedPt.eq_1
add_zero
addOrderOf_eq_prime_pow 📖mathematicalAddMonoid.toNatSMul
Monoid.toNatPow
Nat.instMonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addOrderOfFunction.minimalPeriod_eq_prime_pow
isPeriodicPt_add_iff_nsmul_eq_zero
addOrderOf_eq_zero 📖mathematicalIsOfFinAddOrderaddOrderOfaddOrderOf.eq_1
Function.minimalPeriod.eq_1
addOrderOf_eq_zero_iff 📖mathematicaladdOrderOf
IsOfFinAddOrder
LT.lt.ne'
IsOfFinAddOrder.addOrderOf_pos
addOrderOf_eq_zero
addOrderOf_eq_zero_iff' 📖mathematicaladdOrderOfaddOrderOf_eq_zero_iff
isOfFinAddOrder_iff_nsmul_eq_zero
addOrderOf_fst_dvd_addOrderOf 📖mathematicaladdOrderOf
Prod.instAddMonoid
Function.minimalPeriod_fst_dvd
addOrderOf_injective 📖mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
addOrderOfaddOrderOf_eq_addOrderOf_iff
AddMonoidHom.map_nsmul
AddMonoidHom.map_zero
addOrderOf_le_card 📖mathematicaladdOrderOf
Nat.card
nonempty_fintype
Nat.card_eq_fintype_card
addOrderOf_le_card_univ
addOrderOf_le_card_univ 📖mathematicaladdOrderOf
Fintype.card
Finset.le_card_of_inj_on_range
Finset.mem_univ
nsmul_injOn_Iio_addOrderOf
addOrderOf_le_of_nsmul_eq_zero 📖mathematicalAddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addOrderOfFunction.IsPeriodicPt.minimalPeriod_le
isPeriodicPt_add_iff_nsmul_eq_zero
addOrderOf_map_dvd 📖mathematicaladdOrderOf
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
addOrderOf_dvd_of_nsmul_eq_zero
map_nsmul
AddMonoidHom.instAddMonoidHomClass
addOrderOf_nsmul_eq_zero
map_zero
AddMonoidHomClass.toZeroHomClass
addOrderOf_ne_zero_iff 📖mathematicalIsOfFinAddOrderIff.not_left
addOrderOf_eq_zero_iff
addOrderOf_neg 📖mathematicaladdOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
addOrderOf_eq_addOrderOf_iff
neg_nsmul
neg_eq_zero
addOrderOf_nsmul 📖mathematicaladdOrderOf
AddLeftCancelMonoid.toAddMonoid
AddMonoid.toNatSMul
IsOfFinAddOrder.addOrderOf_nsmul
isOfFinAddOrder_of_finite
addOrderOf_nsmul' 📖mathematicaladdOrderOf
AddMonoid.toNatSMul
Function.minimalPeriod_iterate_eq_div_gcd
add_left_iterate
addOrderOf_nsmul_addOrderOf_sub 📖mathematicaladdOrderOfAddMonoid.toNatSMuladdOrderOf_nsmul_of_dvd
left_ne_zero_of_mul
addOrderOf_nsmul_eq_zero 📖mathematicalAddMonoid.toNatSMul
addOrderOf
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addOrderOf.eq_1
add_left_iterate_apply_zero
Function.isPeriodicPt_minimalPeriod
addOrderOf_nsmul_of_dvd 📖mathematicaladdOrderOfAddMonoid.toNatSMuladdOrderOf_nsmul'
addOrderOf_ofMul_eq_orderOf 📖mathematicaladdOrderOf
Additive
Additive.addMonoid
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
orderOf
addOrderOf_pos 📖mathematicaladdOrderOf
AddLeftCancelMonoid.toAddMonoid
IsOfFinAddOrder.addOrderOf_pos
isOfFinAddOrder_of_finite
addOrderOf_pos_iff 📖mathematicaladdOrderOf
IsOfFinAddOrder
iff_not_comm
addOrderOf_eq_zero_iff
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
addOrderOf_smul_dvd 📖mathematicaladdOrderOf
AddMonoid.toNatSMul
addOrderOf_dvd_iff_nsmul_eq_zero
nsmul_left_comm
addOrderOf_nsmul_eq_zero
nsmul_zero
addOrderOf_snd_dvd_addOrderOf 📖mathematicaladdOrderOf
Prod.instAddMonoid
Function.minimalPeriod_snd_dvd
addOrderOf_zero 📖mathematicaladdOrderOf
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addOrderOf.eq_1
Function.minimalPeriod_id
zero_add_eq_id
card_nsmul_eq_zero 📖mathematicalAddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Fintype.card
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Nat.card_eq_fintype_card
card_nsmul_eq_zero'
card_nsmul_eq_zero' 📖mathematicalAddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Nat.card
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
addOrderOf_dvd_iff_nsmul_eq_zero
addOrderOf_dvd_natCard
card_zmultiples_le 📖mathematicalAddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Fintype.card
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
AddSubgroup.instFintypeSubtypeMemOfDecidablePred
AddSubgroup.decidableMemZMultiples
Fintype.card_zmultiples
addOrderOf_le_of_nsmul_eq_zero
Ne.bot_lt
card_zpowers_le 📖mathematicalMonoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Fintype.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
Subgroup.instFintypeSubtypeMemOfDecidablePred
Subgroup.decidableMemZPowers
Fintype.card_zpowers
orderOf_le_of_pow_eq_one
Ne.bot_lt
charP_of_ne_zero 📖mathematicalFintype.cardCharP
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
Nat.cast_card_eq_zero
Fintype.card_pos_iff
add_zero
MulZeroClass.zero_mul
Nat.cast_mul
Nat.cast_add
charP_of_prime_pow_injective 📖mathematicalFintype.card
Monoid.toNatPow
Nat.instMonoid
CharP
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CharP.exists
CharP.cast_eq_zero_iff
Nat.cast_card_eq_zero
Nat.dvd_prime_pow
Fact.out
Nat.cast_pow
CharP.cast_eq_zero
coe_powCardSubgroup 📖mathematicalSet.NonemptySetLike.coe
Subgroup
Subgroup.instSetLike
powCardSubgroup
Set
Set.NPow
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Fintype.card
coe_smulCardAddSubgroup 📖mathematicalSet.NonemptySetLike.coe
AddSubgroup
AddSubgroup.instSetLike
smulCardAddSubgroup
Set
Set.NSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Fintype.card
exists_addOrderOf_eq_prime_pow_iff 📖mathematicaladdOrderOf
Monoid.toNatPow
Nat.instMonoid
AddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addOrderOf_nsmul_eq_zero
Nat.dvd_prime_pow
Fact.elim
addOrderOf_dvd_of_nsmul_eq_zero
exists_nsmul_eq_self_of_coprime 📖mathematicaladdOrderOfAddMonoid.toNatSMulone_nsmul
AddMonoid.addOrderOf_eq_one_iff
nsmul_zero
Nat.exists_mul_mod_eq_one_of_coprime
mul_nsmul
mod_addOrderOf_nsmul
exists_orderOf_eq_prime_pow_iff 📖mathematicalorderOf
Monoid.toNatPow
Nat.instMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
pow_orderOf_eq_one
Nat.dvd_prime_pow
Fact.elim
orderOf_dvd_of_pow_eq_one
exists_pow_eq_self_of_coprime 📖mathematicalorderOfMonoid.toNatPowpow_one
orderOf_eq_one_iff
one_pow
Nat.exists_mul_mod_eq_one_of_coprime
pow_mul
pow_mod_orderOf
exists_zpow_eq_one 📖mathematicalDivInvMonoid.toZPow
Group.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
isOfFinOrder_of_finite
ne_of_gt
zpow_natCast
isPeriodicPt_mul_iff_pow_eq_one
exists_zsmul_eq_zero 📖mathematicalSubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
isOfFinAddOrder_of_finite
ne_of_gt
natCast_zsmul
isPeriodicPt_add_iff_nsmul_eq_zero
finEquivMultiples_apply 📖mathematicalIsOfFinAddOrderDFunLike.coe
Equiv
addOrderOf
AddSubmonoid
AddMonoid.toAddZeroClass
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.multiples
EquivLike.toFunLike
Equiv.instEquivLike
finEquivMultiples
AddMonoid.toNatSMul
finEquivMultiples_symm_apply 📖mathematicalIsOfFinAddOrderDFunLike.coe
Equiv
AddSubmonoid
AddMonoid.toAddZeroClass
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.multiples
addOrderOf
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
finEquivMultiples
AddMonoid.toNatSMul
IsOfFinAddOrder.addOrderOf_pos
IsOfFinAddOrder.addOrderOf_pos
Equiv.symm_apply_eq
finEquivMultiples_apply
mod_addOrderOf_nsmul
finEquivPowers_apply 📖mathematicalIsOfFinOrderDFunLike.coe
Equiv
orderOf
Submonoid
Monoid.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
Submonoid.powers
EquivLike.toFunLike
Equiv.instEquivLike
finEquivPowers
Monoid.toNatPow
finEquivPowers_symm_apply 📖mathematicalIsOfFinOrderDFunLike.coe
Equiv
Submonoid
Monoid.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
Submonoid.powers
orderOf
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
finEquivPowers
Monoid.toNatPow
IsOfFinOrder.orderOf_pos
IsOfFinOrder.orderOf_pos
Equiv.symm_apply_eq
finEquivPowers_apply
pow_mod_orderOf
finEquivZMultiples_apply 📖mathematicalIsOfFinAddOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DFunLike.coe
Equiv
addOrderOf
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
EquivLike.toFunLike
Equiv.instEquivLike
finEquivZMultiples
AddMonoid.toNatSMul
natCast_zsmul
finEquivZMultiples_symm_apply 📖mathematicalIsOfFinAddOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DFunLike.coe
Equiv
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
addOrderOf
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
finEquivZMultiples
AddMonoid.toNatSMul
IsOfFinAddOrder.addOrderOf_pos
IsOfFinAddOrder.addOrderOf_pos
IsOfFinAddOrder.multiples_eq_zmultiples
finEquivZMultiples.eq_1
Equiv.symm_trans_apply
finEquivMultiples_symm_apply
finEquivZPowers_apply 📖mathematicalIsOfFinOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
Equiv
orderOf
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
EquivLike.toFunLike
Equiv.instEquivLike
finEquivZPowers
Monoid.toNatPow
zpow_natCast
finEquivZPowers_symm_apply 📖mathematicalIsOfFinOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
Equiv
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
orderOf
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
finEquivZPowers
Monoid.toNatPow
IsOfFinOrder.orderOf_pos
IsOfFinOrder.orderOf_pos
IsOfFinOrder.powers_eq_zpowers
finEquivZPowers.eq_1
Equiv.symm_trans_apply
finEquivPowers_symm_apply
finite_multiples 📖mathematicalSet.Finite
SetLike.coe
AddSubmonoid
AddMonoid.toAddZeroClass
AddLeftCancelMonoid.toAddMonoid
AddSubmonoid.instSetLike
AddSubmonoid.multiples
IsOfFinAddOrder
Set.Finite.exists_lt_map_eq_of_forall_mem
instInfiniteNat
SetLike.mem_coe
AddSubmonoid.mem_multiples_iff
isOfFinAddOrder_iff_nsmul_eq_zero
tsub_pos_iff_lt
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
add_left_cancel_iff
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_nsmul
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
LT.lt.le
add_zero
IsOfFinAddOrder.finite_multiples
finite_powers 📖mathematicalSet.Finite
SetLike.coe
Submonoid
Monoid.toMulOneClass
LeftCancelMonoid.toMonoid
Submonoid.instSetLike
Submonoid.powers
IsOfFinOrder
Set.Finite.exists_lt_map_eq_of_forall_mem
instInfiniteNat
isOfFinOrder_iff_pow_eq_one
tsub_pos_iff_lt
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
mul_left_cancel_iff
LeftCancelSemigroup.toIsLeftCancelMul
pow_add
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
LT.lt.le
mul_one
IsOfFinOrder.finite_powers
image_range_addOrderOf 📖mathematicalFinset.image
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Finset.range
addOrderOf
Set.toFinset
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
AddSubgroup.zmultiples
AddSubgroup.instFintypeSubtypeMemOfDecidablePred
AddSubgroup.decidableMemZMultiples
Finset.ext
Set.mem_toFinset
SetLike.mem_coe
mem_zmultiples_iff_mem_range_addOrderOf
Finite.of_fintype
image_range_orderOf 📖mathematicalFinset.image
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Finset.range
orderOf
Set.toFinset
SetLike.coe
Subgroup
Subgroup.instSetLike
Subgroup.zpowers
Subgroup.instFintypeSubtypeMemOfDecidablePred
Subgroup.decidableMemZPowers
Finset.ext
Set.mem_toFinset
SetLike.mem_coe
mem_zpowers_iff_mem_range_orderOf
Finite.of_fintype
infinite_multiples 📖mathematicalSet.Infinite
SetLike.coe
AddSubmonoid
AddMonoid.toAddZeroClass
AddLeftCancelMonoid.toAddMonoid
AddSubmonoid.instSetLike
AddSubmonoid.multiples
IsOfFinAddOrder
Iff.not
finite_multiples
infinite_not_isOfFinAddOrder 📖mathematicalIsOfFinAddOrder
AddLeftCancelMonoid.toAddMonoid
Set.Infinite
setOf
isOfFinAddOrder_iff_nsmul_eq_zero
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
mul_nsmul
Mathlib.Tactic.Contrapose.contrapose₂
Set.not_infinite
Set.not_injOn_infinite_finite_image
Set.Ioi_infinite
Nat.instNoMaxOrder
Mathlib.Tactic.Contrapose.contrapose₄
Set.injOn_of_injective
injective_nsmul_iff_not_isOfFinAddOrder
Set.Infinite.mono
infinite_not_isOfFinOrder 📖mathematicalIsOfFinOrder
LeftCancelMonoid.toMonoid
Set.Infinite
setOf
isOfFinOrder_iff_pow_eq_one
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
pow_mul
Mathlib.Tactic.Contrapose.contrapose₂
Set.not_injOn_infinite_finite_image
Set.Ioi_infinite
Nat.instNoMaxOrder
Mathlib.Tactic.Contrapose.contrapose₄
Set.injOn_of_injective
injective_pow_iff_not_isOfFinOrder
Set.Infinite.mono
infinite_powers 📖mathematicalSet.Infinite
SetLike.coe
Submonoid
Monoid.toMulOneClass
LeftCancelMonoid.toMonoid
Submonoid.instSetLike
Submonoid.powers
IsOfFinOrder
Iff.not
finite_powers
injective_nsmul_iff_not_isOfFinAddOrder 📖mathematicalAddMonoid.toNatSMul
AddLeftCancelMonoid.toAddMonoid
IsOfFinAddOrder
not_isOfFinAddOrder_of_injective_nsmul
Nat.modEq_zero_iff
addOrderOf_eq_zero_iff
nsmul_eq_nsmul_iff_modEq
injective_pow_iff_not_isOfFinOrder 📖mathematicalMonoid.toNatPow
LeftCancelMonoid.toMonoid
IsOfFinOrder
not_isOfFinOrder_of_injective_pow
Nat.modEq_zero_iff
orderOf_eq_zero_iff
pow_eq_pow_iff_modEq
injective_zpow_iff_not_isOfFinOrder 📖mathematicalDivInvMonoid.toZPow
Group.toDivInvMonoid
IsOfFinOrder
DivInvMonoid.toMonoid
Nat.cast_ne_zero
Int.instCharZero
LT.lt.ne'
zpow_natCast
zpow_zero
Int.modEq_zero_iff
Nat.cast_zero
orderOf_eq_zero_iff
zpow_eq_zpow_iff_modEq
injective_zsmul_iff_not_isOfFinAddOrder 📖mathematicalSubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
IsOfFinAddOrder
SubNegMonoid.toAddMonoid
isOfFinAddOrder_iff_nsmul_eq_zero
Nat.cast_ne_zero
Int.instCharZero
LT.lt.ne'
natCast_zsmul
zero_zsmul
Int.modEq_zero_iff
Nat.cast_zero
addOrderOf_eq_zero_iff
zsmul_eq_zsmul_iff_modEq
isAddTorsionFree_iff_not_isOfFinAddOrder 📖mathematicalIsAddTorsionFree
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
IsOfFinAddOrder
not_isOfFinAddOrder_of_isAddTorsionFree
sub_eq_zero
of_not_not
isOfFinAddOrder_iff_nsmul_eq_zero
Ne.bot_lt
nsmul_sub
isMulTorsionFree_iff_not_isOfFinOrder 📖mathematicalIsMulTorsionFree
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
IsOfFinOrder
not_isOfFinOrder_of_isMulTorsionFree
div_eq_one
of_not_not
Ne.bot_lt
isOfFinAddOrder_iff_nsmul_eq_zero 📖mathematicalIsOfFinAddOrder
AddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Function.mem_periodicPts
isPeriodicPt_add_iff_nsmul_eq_zero
isOfFinAddOrder_iff_zsmul_eq_zero 📖mathematicalIsOfFinAddOrder
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
SubNegMonoid.toZSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
isOfFinAddOrder_iff_nsmul_eq_zero
natCast_zsmul
neg_eq_zero
neg_zsmul
isOfFinAddOrder_neg_iff 📖mathematicalIsOfFinAddOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
isOfFinAddOrder_iff_nsmul_eq_zero
neg_nsmul
neg_eq_zero
isOfFinAddOrder_nsmul 📖mathematicalIsOfFinAddOrder
AddMonoid.toNatSMul
Decidable.eq_or_ne
zero_nsmul
IsOfFinAddOrder.zero
IsOfFinAddOrder.of_nsmul
IsOfFinAddOrder.nsmul
isOfFinAddOrder_ofMul_iff 📖mathematicalIsOfFinAddOrder
Additive
Additive.addMonoid
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
IsOfFinOrder
isOfFinAddOrder_of_finite 📖mathematicalIsOfFinAddOrder
AddLeftCancelMonoid.toAddMonoid
infinite_not_isOfFinAddOrder
Set.toFinite
Subtype.finite
isOfFinOrder_iff_isUnit 📖mathematicalIsOfFinOrder
IsUnit
IsOfFinOrder.isUnit
Units.isOfFinOrder_val
isOfFinOrder_of_finite
isOfFinOrder_iff_pow_eq_one 📖mathematicalIsOfFinOrder
Monoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
isOfFinOrder_iff_zpow_eq_one 📖mathematicalIsOfFinOrder
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
DivInvMonoid.toZPow
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
isOfFinOrder_iff_pow_eq_one
zpow_natCast
inv_eq_one
zpow_neg
isOfFinOrder_inv_iff 📖mathematicalIsOfFinOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
inv_pow
isOfFinOrder_ofAdd_iff 📖mathematicalIsOfFinOrder
Multiplicative
Multiplicative.monoid
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
IsOfFinAddOrder
isOfFinOrder_of_finite 📖mathematicalIsOfFinOrder
LeftCancelMonoid.toMonoid
infinite_not_isOfFinOrder
Set.toFinite
Subtype.finite
isOfFinOrder_pow 📖mathematicalIsOfFinOrder
Monoid.toNatPow
Decidable.eq_or_ne
pow_zero
IsOfFinOrder.of_pow
IsOfFinOrder.pow
isPeriodicPt_add_iff_nsmul_eq_zero 📖mathematicalFunction.IsPeriodicPt
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toZero
AddMonoid.toNatSMul
Function.IsPeriodicPt.eq_1
Function.IsFixedPt.eq_1
add_left_iterate_apply_zero
isPeriodicPt_mul_iff_pow_eq_one 📖mathematicalFunction.IsPeriodicPt
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
Monoid.toNatPow
Function.IsPeriodicPt.eq_1
Function.IsFixedPt.eq_1
mul_left_iterate_apply_one
mem_multiples_iff_mem_range_addOrderOf 📖mathematicalAddSubmonoid
AddMonoid.toAddZeroClass
AddLeftCancelMonoid.toAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.multiples
Finset
Finset.instMembership
Finset.image
AddMonoid.toNatSMul
Finset.range
addOrderOf
Finset.mem_range_iff_mem_finset_range_of_mod_eq'
addOrderOf_pos
mod_addOrderOf_nsmul
mem_multiples_iff_mem_zmultiples 📖mathematicalAddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.multiples
AddSubgroup
AddSubgroup.instSetLike
AddSubgroup.zmultiples
IsOfFinAddOrder.mem_multiples_iff_mem_zmultiples
isOfFinAddOrder_of_finite
mem_powers_iff_mem_range_orderOf 📖mathematicalSubmonoid
Monoid.toMulOneClass
LeftCancelMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
Submonoid.powers
Finset
Finset.instMembership
Finset.image
Monoid.toNatPow
Finset.range
orderOf
Finset.mem_range_iff_mem_finset_range_of_mod_eq'
orderOf_pos
pow_mod_orderOf
mem_powers_iff_mem_zpowers 📖mathematicalSubmonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.instMembership
Submonoid.instSetLike
Submonoid.powers
Subgroup
Subgroup.instSetLike
Subgroup.zpowers
IsOfFinOrder.mem_powers_iff_mem_zpowers
isOfFinOrder_of_finite
mem_zmultiples_iff_mem_range_addOrderOf 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
Finset
Finset.instMembership
Finset.image
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Finset.range
addOrderOf
IsOfFinAddOrder.mem_zmultiples_iff_mem_range_addOrderOf
isOfFinAddOrder_of_finite
mem_zmultiples_nsmul_iff 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
addOrderOf
natCast_zsmul
mem_zmultiples_zsmul_iff
mem_zmultiples_zsmul_iff 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
addOrderOf
SubNegMonoid.toAddMonoid
Int.gcd_dvd_iff
Nat.cast_one
dvd_def
Int.modEq_iff_dvd
zsmul_eq_zsmul_iff_modEq
one_zsmul
mul_zsmul'
AddSubgroup.mem_zmultiples_iff
mem_zpowers_iff_mem_range_orderOf 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
Finset
Finset.instMembership
Finset.image
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Finset.range
orderOf
IsOfFinOrder.mem_zpowers_iff_mem_range_orderOf
isOfFinOrder_of_finite
mem_zpowers_pow_iff 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
orderOf
zpow_natCast
mem_zpowers_zpow_iff
mem_zpowers_zpow_iff 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
DivInvMonoid.toZPow
Group.toDivInvMonoid
orderOf
DivInvMonoid.toMonoid
Nat.cast_one
zpow_one
zpow_mul
mod_addOrderOf_nsmul 📖mathematicalAddMonoid.toNatSMul
addOrderOf
add_nsmul
mul_nsmul
addOrderOf_nsmul_eq_zero
nsmul_zero
add_zero
mod_addOrderOf_zsmul 📖mathematicalSubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
addOrderOf
SubNegMonoid.toAddMonoid
add_zsmul
mul_zsmul'
natCast_zsmul
addOrderOf_nsmul_eq_zero
zsmul_zero
add_zero
mod_card_nsmul 📖mathematicalAddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Fintype.card
mod_addOrderOf_nsmul
addOrderOf_dvd_card
mod_card_zsmul 📖mathematicalSubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Fintype.card
mod_addOrderOf_zsmul
addOrderOf_dvd_card
mod_natCard_nsmul 📖mathematicalAddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Nat.card
mod_addOrderOf_nsmul
addOrderOf_dvd_natCard
mod_natCard_zsmul 📖mathematicalSubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Nat.card
mod_addOrderOf_zsmul
addOrderOf_dvd_natCard
multiplesEquivMultiples_apply 📖mathematicaladdOrderOf
AddLeftCancelMonoid.toAddMonoid
DFunLike.coe
Equiv
AddSubmonoid
AddMonoid.toAddZeroClass
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.multiples
EquivLike.toFunLike
Equiv.instEquivLike
multiplesEquivMultiples
AddMonoid.toNatSMul
isOfFinAddOrder_of_finite
multiplesEquivMultiples.eq_1
Equiv.trans_apply
IsOfFinAddOrder.addOrderOf_pos
finEquivMultiples_symm_apply
Equiv.eq_symm_apply
multiples_eq_zmultiples 📖mathematicalSetLike.coe
AddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubmonoid.instSetLike
AddSubmonoid.multiples
AddSubgroup
AddSubgroup.instSetLike
AddSubgroup.zmultiples
IsOfFinAddOrder.multiples_eq_zmultiples
isOfFinAddOrder_of_finite
not_isAddTorsionFree_iff_isOfFinAddOrder 📖mathematicalIsAddTorsionFree
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
IsOfFinAddOrder
isAddTorsionFree_iff_not_isOfFinAddOrder
not_isMulTorsionFree_iff_isOfFinOrder 📖mathematicalIsMulTorsionFree
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
IsOfFinOrder
not_isOfFinAddOrder_of_injective_nsmul 📖mathematicalAddMonoid.toNatSMulIsOfFinAddOrderisOfFinAddOrder_iff_nsmul_eq_zero
irrefl
instIrreflLt
zero_nsmul
not_isOfFinAddOrder_of_isAddTorsionFree 📖mathematicalIsOfFinAddOrderisOfFinAddOrder_iff_nsmul_eq_zero
nsmul_right_injective
LT.lt.ne'
nsmul_zero
nsmul_eq_zero_iff
not_isOfFinOrder_of_injective_pow 📖mathematicalMonoid.toNatPowIsOfFinOrderirrefl
instIrreflLt
pow_zero
not_isOfFinOrder_of_isMulTorsionFree 📖mathematicalIsOfFinOrderisOfFinOrder_iff_pow_eq_one
pow_left_injective
LT.lt.ne'
one_pow
nsmulCoprime_apply 📖mathematicalNat.cardDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
nsmulCoprime
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
nsmulCoprime_neg 📖mathematicalNat.cardDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
nsmulCoprime
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
neg_nsmul
nsmulCoprime_symm_apply 📖mathematicalNat.cardDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
nsmulCoprime
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Nat.gcdB
nsmulCoprime_zero 📖mathematicalNat.cardDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
nsmulCoprime
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
nsmul_zero
nsmul_eq_nsmul_iff_modEq 📖mathematicalAddMonoid.toNatSMul
AddLeftCancelMonoid.toAddMonoid
Nat.ModEq
addOrderOf
add_zero
add_nsmul
add_left_cancel_iff
AddLeftCancelSemigroup.toIsLeftCancelAdd
nsmul_eq_zero_iff_modEq
Nat.ModEq.add_left
Nat.ModEq.add_left_cancel'
Nat.ModEq.comm
le_of_not_ge
nsmul_eq_nsmul_of_modEq 📖Nat.ModEq
AddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
le_total
le_iff_exists_add
Nat.instCanonicallyOrderedAdd
Nat.left_modEq_add_iff
add_nsmul
mul_nsmul
nsmul_zero
add_zero
Nat.add_modEq_left_iff
nsmul_eq_zero_iff_modEq 📖mathematicalAddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.ModEq
addOrderOf
Nat.modEq_zero_iff_dvd
addOrderOf_dvd_iff_nsmul_eq_zero
nsmul_finEquivZMultiples_symm_apply 📖mathematicalIsOfFinAddOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoid.toNatSMul
addOrderOf
DFunLike.coe
Equiv
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
finEquivZMultiples
Equiv.apply_symm_apply
nsmul_injOn_Iio_addOrderOf 📖mathematicalSet.InjOn
AddMonoid.toNatSMul
Set.Iio
Nat.instPreorder
addOrderOf
add_left_iterate_apply_zero
Function.iterate_injOn_Iio_minimalPeriod
nsmul_inj_iff_of_addOrderOf_eq_zero 📖mathematicaladdOrderOf
AddLeftCancelMonoid.toAddMonoid
AddMonoid.toNatSMulnsmul_eq_nsmul_iff_modEq
Nat.modEq_zero_iff
nsmul_inj_mod 📖mathematicalAddMonoid.toNatSMul
AddLeftCancelMonoid.toAddMonoid
addOrderOf
nsmul_eq_nsmul_iff_modEq
nsmul_ne_zero_of_lt_addOrderOf 📖addOrderOfFunction.not_isPeriodicPt_of_pos_of_lt_minimalPeriod
isPeriodicPt_add_iff_nsmul_eq_zero
orderOf_abs_ne_one 📖mathematicalorderOf
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
orderOf_eq_zero_iff'
abs_pow
IsStrictOrderedRing.toIsOrderedRing
abs_one
Ne.lt_or_gt
LT.lt.ne
pow_lt_one₀
IsOrderedRing.toPosMulMono
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
LT.lt.ne'
one_lt_pow₀
IsStrictOrderedRing.toZeroLEOneClass
orderOf_apply_dvd_orderOf 📖mathematicalorderOf
Pi.monoid
Function.minimalPeriod_single_dvd_minimalPeriod_piMap
orderOf_dvd_card 📖mathematicalorderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Fintype.card
Fintype.card_zpowers
mul_comm
Fintype.card_prod
Fintype.card_congr
orderOf_dvd_iff_pow_eq_one 📖mathematicalorderOf
Monoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
pow_mod_orderOf
pow_zero
orderOf_dvd_of_pow_eq_one
orderOf_dvd_iff_zpow_eq_one 📖mathematicalorderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivInvMonoid.toZPow
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
orderOf_dvd_iff_pow_eq_one
zpow_natCast
dvd_neg
zpow_neg
inv_eq_one
orderOf_dvd_natCard 📖mathematicalorderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Nat.card
Nat.card_eq_fintype_card
Nat.card_eq_zero_of_infinite
orderOf_dvd_of_mem_zpowers 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.mem_zpowers_iff
orderOf_dvd_iff_pow_eq_one
zpow_pow_orderOf
orderOf_dvd_of_pow_eq_one 📖mathematicalMonoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
orderOfFunction.IsPeriodicPt.minimalPeriod_dvd
isPeriodicPt_mul_iff_pow_eq_one
orderOf_dvd_sub_iff_zpow_eq_zpow 📖mathematicalorderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivInvMonoid.toZPow
orderOf_dvd_iff_zpow_eq_one
zpow_sub
mul_inv_eq_one
orderOf_eq_card_powers 📖mathematicalorderOf
LeftCancelMonoid.toMonoid
Fintype.card
Submonoid
Monoid.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
Submonoid.powers
Submonoid.fintypePowers
Fintype.card_fin
Fintype.card_eq
isOfFinOrder_of_finite
Finite.of_fintype
orderOf_eq_iff 📖mathematicalorderOf
Monoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
Nat.find_eq_iff
LT.lt.ne
orderOf_eq_of_pow_and_pow_div_prime 📖mathematicalMonoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
orderOfexists_eq_mul_right_of_dvd
orderOf_dvd_of_pow_eq_one
exists_eq_mul_left_of_dvd
Nat.minFac_dvd
Dvd.intro_left
mul_assoc
Nat.minFac_prime
orderOf_dvd_iff_pow_eq_one
mul_comm
IsOfFinOrder.orderOf_pos
isOfFinOrder_iff_pow_eq_one
mul_one
orderOf_eq_one_iff 📖mathematicalorderOf
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
orderOf.eq_1
Function.minimalPeriod_eq_one_iff_isFixedPt
Function.IsFixedPt.eq_1
mul_one
orderOf_eq_orderOf_iff 📖mathematicalorderOf
Monoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
orderOf_eq_prime 📖mathematicalMonoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
orderOforderOf_eq_prime_iff
orderOf_eq_prime_iff 📖mathematicalorderOf
Monoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
orderOf.eq_1
Function.minimalPeriod_eq_prime_iff
isPeriodicPt_mul_iff_pow_eq_one
Function.IsFixedPt.eq_1
mul_one
orderOf_eq_prime_pow 📖mathematicalMonoid.toNatPow
Nat.instMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
orderOfFunction.minimalPeriod_eq_prime_pow
isPeriodicPt_mul_iff_pow_eq_one
orderOf_eq_zero 📖mathematicalIsOfFinOrderorderOforderOf.eq_1
Function.minimalPeriod.eq_1
orderOf_eq_zero_iff 📖mathematicalorderOf
IsOfFinOrder
LT.lt.ne'
IsOfFinOrder.orderOf_pos
orderOf_eq_zero
orderOf_eq_zero_iff' 📖mathematicalorderOf
orderOf_eq_zero_iff_eq_zero 📖mathematicalorderOf
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Finite.of_injective
Units.val_injective
orderOf_fst_dvd_orderOf 📖mathematicalorderOf
Prod.instMonoid
Function.minimalPeriod_fst_dvd
orderOf_injective 📖mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
orderOfMonoidHom.map_pow
MonoidHom.map_one
orderOf_inv 📖mathematicalorderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
inv_pow
orderOf_le_card 📖mathematicalorderOf
Nat.card
nonempty_fintype
Nat.card_eq_fintype_card
orderOf_le_card_univ
orderOf_le_card_univ 📖mathematicalorderOf
Fintype.card
Finset.le_card_of_inj_on_range
Finset.mem_univ
pow_injOn_Iio_orderOf
orderOf_le_of_pow_eq_one 📖mathematicalMonoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
orderOfFunction.IsPeriodicPt.minimalPeriod_le
isPeriodicPt_mul_iff_pow_eq_one
orderOf_map_dvd 📖mathematicalorderOf
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
orderOf_dvd_of_pow_eq_one
map_pow
MonoidHom.instMonoidHomClass
pow_orderOf_eq_one
map_one
MonoidHomClass.toOneHomClass
orderOf_ne_zero_iff 📖mathematicalIsOfFinOrderIff.not_left
orderOf_eq_zero_iff
orderOf_neg_one 📖mathematicalorderOf
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
ringChar
Semiring.toNonAssocSemiring
neg_one_eq_one_iff
orderOf_one
orderOf_eq_prime
Nat.fact_prime_two
Even.neg_pow
Nat.instAtLeastTwoHAddOfNat
one_pow
orderOf_ofAdd_eq_addOrderOf 📖mathematicalorderOf
Multiplicative
Multiplicative.monoid
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
addOrderOf
orderOf_one 📖mathematicalorderOf
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
orderOf.eq_1
Function.minimalPeriod_id
one_mul_eq_id
orderOf_piMulSingle 📖mathematicalorderOf
Pi.monoid
Pi.mulSingle
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
orderOf_injective
Pi.mulSingle_injective
orderOf_pos 📖mathematicalorderOf
LeftCancelMonoid.toMonoid
IsOfFinOrder.orderOf_pos
isOfFinOrder_of_finite
orderOf_pos_iff 📖mathematicalorderOf
IsOfFinOrder
iff_not_comm
orderOf_eq_zero_iff
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
orderOf_pow 📖mathematicalorderOf
LeftCancelMonoid.toMonoid
Monoid.toNatPow
IsOfFinOrder.orderOf_pow
isOfFinOrder_of_finite
orderOf_pow' 📖mathematicalorderOf
Monoid.toNatPow
Function.minimalPeriod_iterate_eq_div_gcd
mul_left_iterate
orderOf_pow_dvd 📖mathematicalorderOf
Monoid.toNatPow
orderOf_dvd_iff_pow_eq_one
pow_right_comm
pow_orderOf_eq_one
one_pow
orderOf_pow_of_dvd 📖mathematicalorderOfMonoid.toNatPoworderOf_pow'
orderOf_pow_orderOf_div 📖mathematicalorderOfMonoid.toNatPoworderOf_pow_of_dvd
left_ne_zero_of_mul
orderOf_snd_dvd_orderOf 📖mathematicalorderOf
Prod.instMonoid
Function.minimalPeriod_snd_dvd
orderOf_submonoid 📖mathematicalorderOf
Submonoid
Monoid.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
Submonoid.toMonoid
orderOf_injective
Subtype.coe_injective
orderOf_units 📖mathematicalorderOf
Units.val
Units
Units.instMonoid
orderOf_injective
Units.val_injective
orderOf_zero 📖mathematicalorderOf
MonoidWithZero.toMonoid
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
orderOf_eq_zero_iff
isOfFinOrder_iff_pow_eq_one
zero_pow
NeZero.one
powCoprime_apply 📖mathematicalNat.cardDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
powCoprime
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
powCoprime_inv 📖mathematicalNat.cardDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
powCoprime
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
inv_pow
powCoprime_one 📖mathematicalNat.cardDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
powCoprime
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
one_pow
powCoprime_symm_apply 📖mathematicalNat.cardDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
powCoprime
DivInvMonoid.toZPow
Group.toDivInvMonoid
Nat.gcdB
pow_card_eq_one 📖mathematicalMonoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Fintype.card
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Nat.card_eq_fintype_card
pow_card_eq_one'
pow_card_eq_one' 📖mathematicalMonoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Nat.card
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
orderOf_dvd_iff_pow_eq_one
orderOf_dvd_natCard
pow_eq_one_iff_modEq 📖mathematicalMonoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
Nat.ModEq
orderOf
Nat.modEq_zero_iff_dvd
orderOf_dvd_iff_pow_eq_one
pow_eq_pow_iff_modEq 📖mathematicalMonoid.toNatPow
LeftCancelMonoid.toMonoid
Nat.ModEq
orderOf
mul_one
pow_add
mul_left_cancel_iff
LeftCancelSemigroup.toIsLeftCancelMul
pow_eq_one_iff_modEq
Nat.ModEq.add_left
Nat.ModEq.add_left_cancel'
Nat.ModEq.comm
le_of_not_ge
pow_eq_pow_of_modEq 📖Nat.ModEq
Monoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
le_total
le_iff_exists_add
Nat.instCanonicallyOrderedAdd
pow_add
pow_mul
one_pow
mul_one
pow_finEquivZPowers_symm_apply 📖mathematicalIsOfFinOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Monoid.toNatPow
orderOf
DFunLike.coe
Equiv
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
finEquivZPowers
Equiv.apply_symm_apply
pow_gcd_card_eq_one_iff 📖mathematicalMonoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Fintype.card
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
pow_card_eq_one
pow_injOn_Iio_orderOf 📖mathematicalSet.InjOn
Monoid.toNatPow
Set.Iio
Nat.instPreorder
orderOf
mul_left_iterate_apply_one
Function.iterate_injOn_Iio_minimalPeriod
pow_inj_iff_of_orderOf_eq_zero 📖mathematicalorderOf
LeftCancelMonoid.toMonoid
Monoid.toNatPowpow_eq_pow_iff_modEq
Nat.modEq_zero_iff
pow_inj_mod 📖mathematicalMonoid.toNatPow
LeftCancelMonoid.toMonoid
orderOf
pow_eq_pow_iff_modEq
pow_mod_card 📖mathematicalMonoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Fintype.card
pow_mod_orderOf
orderOf_dvd_card
pow_mod_natCard 📖mathematicalMonoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Nat.card
pow_mod_orderOf
orderOf_dvd_natCard
pow_mod_orderOf 📖mathematicalMonoid.toNatPow
orderOf
pow_add
pow_mul
pow_orderOf_eq_one
one_pow
mul_one
pow_ne_one_of_lt_orderOf 📖orderOfFunction.not_isPeriodicPt_of_pos_of_lt_minimalPeriod
isPeriodicPt_mul_iff_pow_eq_one
pow_orderOf_eq_one 📖mathematicalMonoid.toNatPow
orderOf
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
orderOf.eq_1
mul_left_iterate_apply_one
Function.isPeriodicPt_minimalPeriod
powersEquivPowers_apply 📖mathematicalorderOf
LeftCancelMonoid.toMonoid
DFunLike.coe
Equiv
Submonoid
Monoid.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
Submonoid.powers
EquivLike.toFunLike
Equiv.instEquivLike
powersEquivPowers
Monoid.toNatPow
isOfFinOrder_of_finite
powersEquivPowers.eq_1
Equiv.trans_apply
IsOfFinOrder.orderOf_pos
finEquivPowers_symm_apply
Equiv.eq_symm_apply
powers_eq_zpowers 📖mathematicalSetLike.coe
Submonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Submonoid.instSetLike
Submonoid.powers
Subgroup
Subgroup.instSetLike
Subgroup.zpowers
IsOfFinOrder.powers_eq_zpowers
isOfFinOrder_of_finite
smul_eq_of_le_smul 📖Preorder.toLE
PartialOrder.toPreorder
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
smul_mono_right
le_pow_smul
le_antisymm
one_smul
pow_card_eq_one'
Nat.card_pos
One.instNonempty
pow_succ'
smul_smul
smul_eq_of_smul_le 📖Preorder.toLE
PartialOrder.toPreorder
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
smul_mono_right
pow_smul_le
le_antisymm
one_smul
pow_card_eq_one'
Nat.card_pos
One.instNonempty
pow_succ'
smul_smul
smul_eq_self_of_mem_zpowers 📖Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Subgroup.mem_zpowers_iff
MulAction.toPerm_apply
MulAction.toPermHom_apply
map_zpow
MonoidHom.instMonoidHomClass
Function.IsFixedPt.perm_zpow
sum_card_addOrderOf_eq_card_nsmul_eq_zero 📖mathematicalFinset.sum
Nat.instAddCommMonoid
Nat.divisors
Finset.card
Finset.filter
addOrderOf
Finset.univ
AddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Finset.card_biUnion
SetLike.mem_coe
Nat.mem_divisors
disjoint_iff
Finset.ext_iff
Finset.mem_inter
Finset.mem_filter
Finset.mem_univ
Finset.notMem_empty
Finset.ext
Finset.mem_biUnion
addOrderOf_dvd_iff_nsmul_eq_zero
sum_card_orderOf_eq_card_pow_eq_one 📖mathematicalFinset.sum
Nat.instAddCommMonoid
Nat.divisors
Finset.card
Finset.filter
orderOf
Finset.univ
Monoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
Finset.card_biUnion
Finset.ext
vadd_eq_self_of_mem_zmultiples 📖AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
smul_eq_self_of_mem_zpowers
zmultiples_abs 📖mathematicalAddSubgroup.zmultiples
AddCommGroup.toAddGroup
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs_cases
AddSubgroup.zmultiples_neg
zmultiples_equiv_zmultiples_apply 📖mathematicaladdOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DFunLike.coe
Equiv
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
EquivLike.toFunLike
Equiv.instEquivLike
zmultiplesEquivZMultiples
AddMonoid.toNatSMul
natCast_zsmul
natCast_zsmul
zmultiplesEquivZMultiples.eq_1
Equiv.trans_apply
IsOfFinAddOrder.addOrderOf_pos
finEquivZMultiples_symm_apply
Equiv.eq_symm_apply
zpow_eq_one_iff_modEq 📖mathematicalDivInvMonoid.toZPow
Group.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Int.ModEq
orderOf
DivInvMonoid.toMonoid
Int.modEq_zero_iff_dvd
orderOf_dvd_iff_zpow_eq_one
zpow_eq_zpow_iff_modEq 📖mathematicalDivInvMonoid.toZPow
Group.toDivInvMonoid
Int.ModEq
orderOf
DivInvMonoid.toMonoid
mul_inv_eq_one
zpow_sub
zpow_eq_one_iff_modEq
Int.modEq_iff_dvd
zero_sub
neg_sub
zpow_mod_card 📖mathematicalDivInvMonoid.toZPow
Group.toDivInvMonoid
Fintype.card
zpow_mod_orderOf
orderOf_dvd_card
zpow_mod_natCard 📖mathematicalDivInvMonoid.toZPow
Group.toDivInvMonoid
Nat.card
zpow_mod_orderOf
orderOf_dvd_natCard
zpow_mod_orderOf 📖mathematicalDivInvMonoid.toZPow
Group.toDivInvMonoid
orderOf
DivInvMonoid.toMonoid
zpow_add
zpow_mul
zpow_natCast
pow_orderOf_eq_one
one_zpow
mul_one
zpow_pow_orderOf 📖mathematicalMonoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivInvMonoid.toZPow
orderOf
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
zpow_natCast
zpow_mul
mul_comm
pow_orderOf_eq_one
one_zpow
orderOf_eq_zero
pow_zero
zpowersEquivZPowers_apply 📖mathematicalorderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
Equiv
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
EquivLike.toFunLike
Equiv.instEquivLike
zpowersEquivZPowers
Monoid.toNatPow
zpow_natCast
zpow_natCast
zpowersEquivZPowers.eq_1
Equiv.trans_apply
IsOfFinOrder.orderOf_pos
finEquivZPowers_symm_apply
Equiv.eq_symm_apply
zpowers_mabs 📖mathematicalSubgroup.zpowers
CommGroup.toGroup
mabs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
mabs_cases
Subgroup.zpowers_inv
zsmul_eq_zero_iff_modEq 📖mathematicalSubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Int.ModEq
addOrderOf
SubNegMonoid.toAddMonoid
Int.modEq_zero_iff_dvd
addOrderOf_dvd_iff_zsmul_eq_zero
zsmul_eq_zsmul_iff_modEq 📖mathematicalSubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Int.ModEq
addOrderOf
SubNegMonoid.toAddMonoid
add_neg_eq_zero
sub_zsmul
zsmul_eq_zero_iff_modEq
Int.modEq_iff_dvd
zero_sub
neg_sub
zsmul_smul_addOrderOf 📖mathematicalAddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
addOrderOf
SubNegMonoid.toZSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
natCast_zsmul
mul_zsmul'
mul_comm
addOrderOf_nsmul_eq_zero
zsmul_zero
addOrderOf_eq_zero
zero_nsmul

---

← Back to Index