| Metric | Count |
DefinitionsIsOfFinAddOrder, addGroupMultiples, addUnit, IsOfFinOrder, groupPowers, unit, addOrderOf, addSubgroupOfIdempotent, addSubmonoidOfIdempotent, finEquivMultiples, finEquivPowers, finEquivZMultiples, finEquivZPowers, multiplesEquivMultiples, nsmulCoprime, orderOf, powCardSubgroup, powCoprime, powersEquivPowers, smulCardAddSubgroup, subgroupOfIdempotent, submonoidOfIdempotent, zmultiplesEquivZMultiples, zpowersEquivZPowers | 24 |
TheoremsaddOrderOf_add_dvd_lcm, addOrderOf_add_dvd_mul_addOrderOf, addOrderOf_add_eq_mul_addOrderOf_of_coprime, addOrderOf_add_eq_right_of_forall_prime_mul_dvd, addOrderOf_dvd_lcm_add, isOfFinAddOrder_add, addOrderOf_eq, addOrderOf_eq_one_iff, isOfFinAddOrder, addOrderOf_eq, addOrderOf_coe, addOrderOf_dvd_natCard, addOrderOf_le_card, addOrderOf_mk, closure_toAddSubmonoid_of_finite, closure_toAddSubmonoid_of_isOfFinAddOrder, nsmul_index_mem, zmultiples_eq_zmultiples_iff, addOrderOf_le_card, isOfFinAddOrder_coe, isOfFinAddOrder_val, addOrderOf_one, orderOf_eq_two_iff, isOfFinOrder_mul, orderOf_dvd_lcm_mul, orderOf_mul_dvd_lcm, orderOf_mul_dvd_mul_orderOf, orderOf_mul_eq_mul_orderOf_of_coprime, orderOf_mul_eq_right_of_forall_prime_mul_dvd, card_zmultiples, card_zpowers, isOfFinAddOrder_iff, isOfFinOrder_iff, of_not_isOfFinAddOrder, addOrderOf_eq_zero, isOfFinOrder, of_not_isOfFinOrder, add, addOrderOf_nsmul, addOrderOf_pos, apply, eq_zero', exists_nsmul_eq_zero, finite_multiples, fst, isAddUnit, mem_multiples_iff_mem_range_addOrderOf, mem_multiples_iff_mem_zmultiples, mem_zmultiples_iff_mem_range_addOrderOf, mono, multiples_eq_image_range_addOrderOf, multiples_eq_zmultiples, natCard_multiples_le_addOrderOf, neg, nsmul, nsmul_eq_nsmul_iff_modEq, nsmul_inj_mod, of_mem_zmultiples, of_neg, of_nsmul, pi, prod_mk, snd, val_addUnit, val_neg_addUnit, zero, zsmul, apply, eq_neg_one, eq_one, eq_one', exists_pow_eq_one, finite_powers, fst, inv, isUnit, mem_powers_iff_mem_range_orderOf, mem_powers_iff_mem_zpowers, mem_zpowers_iff_mem_range_orderOf, mono, mul, natCard_powers_le_orderOf, of_inv, of_mem_zpowers, of_pow, one, orderOf_pos, orderOf_pow, pi, pow, pow_eq_pow_iff_modEq, pow_inj_mod, powers_eq_image_range_orderOf, powers_eq_zpowers, prod_mk, snd, val_inv_unit, val_unit, zpow, isOfFinOrder, orderOf_eq_one, orderOf_le_two, isOfFinOrder, orderOf_eq, addOrderOf_nsmul, nsmul_right_bijective, orderOf_pow, pow_left_bijective, card_addSubmonoidMultiples, card_submonoidPowers, cast_card_eq_zero, addOrderOf, addOrderOf_eq_sInf, orderOf, orderOf_eq_sInf, addOrderOf, addOrderOf_mk, orderOf, orderOf_mk, orderOf_eq, closure_toSubmonoid_of_finite, closure_toSubmonoid_of_isOfFinOrder, orderOf_coe, orderOf_dvd_natCard, orderOf_le_card, orderOf_mk, pow_index_mem, zpowers_eq_zpowers_iff, isOfFinOrder_coe, orderOf_le_card, addOrderOf_eq, orderOf_eq, isOfFinOrder_val, addOrderOf_addSubmonoid, addOrderOf_addUnits, addOrderOf_apply_dvd_addOrderOf, addOrderOf_dvd_card, addOrderOf_dvd_iff_nsmul_eq_zero, addOrderOf_dvd_iff_zsmul_eq_zero, addOrderOf_dvd_natCard, addOrderOf_dvd_of_mem_zmultiples, addOrderOf_dvd_of_nsmul_eq_zero, addOrderOf_dvd_sub_iff_zsmul_eq_zsmul, addOrderOf_eq_addOrderOf_iff, addOrderOf_eq_card_multiples, addOrderOf_eq_iff, addOrderOf_eq_of_nsmul_and_div_prime_nsmul, addOrderOf_eq_prime, addOrderOf_eq_prime_iff, addOrderOf_eq_prime_pow, addOrderOf_eq_zero, addOrderOf_eq_zero_iff, addOrderOf_eq_zero_iff', addOrderOf_fst_dvd_addOrderOf, addOrderOf_injective, addOrderOf_le_card, addOrderOf_le_card_univ, addOrderOf_le_of_nsmul_eq_zero, addOrderOf_map_dvd, addOrderOf_ne_zero_iff, addOrderOf_neg, addOrderOf_nsmul, addOrderOf_nsmul', addOrderOf_nsmul_addOrderOf_sub, addOrderOf_nsmul_eq_zero, addOrderOf_nsmul_of_dvd, addOrderOf_ofMul_eq_orderOf, addOrderOf_pos, addOrderOf_pos_iff, addOrderOf_smul_dvd, addOrderOf_snd_dvd_addOrderOf, addOrderOf_zero, card_nsmul_eq_zero, card_nsmul_eq_zero', card_zmultiples_le, card_zpowers_le, charP_of_ne_zero, charP_of_prime_pow_injective, coe_powCardSubgroup, coe_smulCardAddSubgroup, exists_addOrderOf_eq_prime_pow_iff, exists_nsmul_eq_self_of_coprime, exists_orderOf_eq_prime_pow_iff, exists_pow_eq_self_of_coprime, exists_zpow_eq_one, exists_zsmul_eq_zero, finEquivMultiples_apply, finEquivMultiples_symm_apply, finEquivPowers_apply, finEquivPowers_symm_apply, finEquivZMultiples_apply, finEquivZMultiples_symm_apply, finEquivZPowers_apply, finEquivZPowers_symm_apply, finite_multiples, finite_powers, image_range_addOrderOf, image_range_orderOf, infinite_multiples, infinite_not_isOfFinAddOrder, infinite_not_isOfFinOrder, infinite_powers, injective_nsmul_iff_not_isOfFinAddOrder, injective_pow_iff_not_isOfFinOrder, injective_zpow_iff_not_isOfFinOrder, injective_zsmul_iff_not_isOfFinAddOrder, isAddTorsionFree_iff_not_isOfFinAddOrder, isMulTorsionFree_iff_not_isOfFinOrder, isOfFinAddOrder_iff_nsmul_eq_zero, isOfFinAddOrder_iff_zsmul_eq_zero, isOfFinAddOrder_neg_iff, isOfFinAddOrder_nsmul, isOfFinAddOrder_ofMul_iff, isOfFinAddOrder_of_finite, isOfFinOrder_iff_isUnit, isOfFinOrder_iff_pow_eq_one, isOfFinOrder_iff_zpow_eq_one, isOfFinOrder_inv_iff, isOfFinOrder_ofAdd_iff, isOfFinOrder_of_finite, isOfFinOrder_pow, isPeriodicPt_add_iff_nsmul_eq_zero, isPeriodicPt_mul_iff_pow_eq_one, mem_multiples_iff_mem_range_addOrderOf, mem_multiples_iff_mem_zmultiples, mem_powers_iff_mem_range_orderOf, mem_powers_iff_mem_zpowers, mem_zmultiples_iff_mem_range_addOrderOf, mem_zmultiples_nsmul_iff, mem_zmultiples_zsmul_iff, mem_zpowers_iff_mem_range_orderOf, mem_zpowers_pow_iff, mem_zpowers_zpow_iff, mod_addOrderOf_nsmul, mod_addOrderOf_zsmul, mod_card_nsmul, mod_card_zsmul, mod_natCard_nsmul, mod_natCard_zsmul, multiplesEquivMultiples_apply, multiples_eq_zmultiples, not_isAddTorsionFree_iff_isOfFinAddOrder, not_isMulTorsionFree_iff_isOfFinOrder, not_isOfFinAddOrder_of_injective_nsmul, not_isOfFinAddOrder_of_isAddTorsionFree, not_isOfFinOrder_of_injective_pow, not_isOfFinOrder_of_isMulTorsionFree, nsmulCoprime_apply, nsmulCoprime_neg, nsmulCoprime_symm_apply, nsmulCoprime_zero, nsmul_eq_nsmul_iff_modEq, nsmul_eq_nsmul_of_modEq, nsmul_eq_zero_iff_modEq, nsmul_finEquivZMultiples_symm_apply, nsmul_injOn_Iio_addOrderOf, nsmul_inj_iff_of_addOrderOf_eq_zero, nsmul_inj_mod, nsmul_ne_zero_of_lt_addOrderOf, orderOf_abs_ne_one, orderOf_apply_dvd_orderOf, orderOf_dvd_card, orderOf_dvd_iff_pow_eq_one, orderOf_dvd_iff_zpow_eq_one, orderOf_dvd_natCard, orderOf_dvd_of_mem_zpowers, orderOf_dvd_of_pow_eq_one, orderOf_dvd_sub_iff_zpow_eq_zpow, orderOf_eq_card_powers, orderOf_eq_iff, orderOf_eq_of_pow_and_pow_div_prime, orderOf_eq_one_iff, orderOf_eq_orderOf_iff, orderOf_eq_prime, orderOf_eq_prime_iff, orderOf_eq_prime_pow, orderOf_eq_zero, orderOf_eq_zero_iff, orderOf_eq_zero_iff', orderOf_eq_zero_iff_eq_zero, orderOf_fst_dvd_orderOf, orderOf_injective, orderOf_inv, orderOf_le_card, orderOf_le_card_univ, orderOf_le_of_pow_eq_one, orderOf_map_dvd, orderOf_ne_zero_iff, orderOf_neg_one, orderOf_ofAdd_eq_addOrderOf, orderOf_one, orderOf_piMulSingle, orderOf_pos, orderOf_pos_iff, orderOf_pow, orderOf_pow', orderOf_pow_dvd, orderOf_pow_of_dvd, orderOf_pow_orderOf_div, orderOf_snd_dvd_orderOf, orderOf_submonoid, orderOf_units, orderOf_zero, powCoprime_apply, powCoprime_inv, powCoprime_one, powCoprime_symm_apply, pow_card_eq_one, pow_card_eq_one', pow_eq_one_iff_modEq, pow_eq_pow_iff_modEq, pow_eq_pow_of_modEq, pow_finEquivZPowers_symm_apply, pow_gcd_card_eq_one_iff, pow_injOn_Iio_orderOf, pow_inj_iff_of_orderOf_eq_zero, pow_inj_mod, pow_mod_card, pow_mod_natCard, pow_mod_orderOf, pow_ne_one_of_lt_orderOf, pow_orderOf_eq_one, powersEquivPowers_apply, powers_eq_zpowers, smul_eq_of_le_smul, smul_eq_of_smul_le, smul_eq_self_of_mem_zpowers, sum_card_addOrderOf_eq_card_nsmul_eq_zero, sum_card_orderOf_eq_card_pow_eq_one, vadd_eq_self_of_mem_zmultiples, zmultiples_abs, zmultiples_equiv_zmultiples_apply, zpow_eq_one_iff_modEq, zpow_eq_zpow_iff_modEq, zpow_mod_card, zpow_mod_natCard, zpow_mod_orderOf, zpow_pow_orderOf, zpowersEquivZPowers_apply, zpowers_mabs, zsmul_eq_zero_iff_modEq, zsmul_eq_zsmul_iff_modEq, zsmul_smul_addOrderOf | 343 |
| Total | 367 |
| Name | Category | Theorems |
IsOfFinAddOrder 📖 | MathDef | 29 mathmath: AddCircle.not_isOfFinAddOrder_iff_forall_rat_ne_div, addOrderOf_eq_zero_iff, AddUnits.isOfFinAddOrder_val, injective_zsmul_iff_not_isOfFinAddOrder, AddMonoid.ExponentExists.isOfFinAddOrder, AddCircle.isOfFinAddOrder_iff_exists_rat_eq_div, AddMonoid.not_isTorsion_iff, isAddTorsionFree_iff_not_isOfFinAddOrder, not_isOfFinAddOrder_of_injective_nsmul, isOfFinOrder_ofAdd_iff, not_isAddTorsionFree_iff_isOfFinAddOrder, IsOfFinAddOrder.zero, infinite_zmultiples, infinite_multiples, addOrderOf_ne_zero_iff, isOfFinAddOrder_neg_iff, not_isOfFinAddOrder_of_isAddTorsionFree, isOfFinAddOrder_nsmul, isOfFinAddOrder_ofMul_iff, addOrderOf_pos_iff, finite_multiples, AddCommGroup.mem_torsion, AddSubmonoid.isOfFinAddOrder_coe, Function.Injective.isOfFinAddOrder_iff, isOfFinAddOrder_iff_zsmul_eq_zero, injective_nsmul_iff_not_isOfFinAddOrder, isOfFinAddOrder_of_finite, isOfFinAddOrder_iff_nsmul_eq_zero, finite_zmultiples
|
IsOfFinOrder 📖 | MathDef | 31 mathmath: not_isOfFinOrder_of_isMulTorsionFree, finite_powers, finite_zpowers, Units.isOfFinOrder_val, isOfFinOrder_inv_iff, isOfFinOrder_iff_zpow_eq_one, not_isMulTorsionFree_iff_isOfFinOrder, LinearEquiv.isOfFinOrder_of_finite_of_span_eq_top_of_mapsTo, infinite_zpowers, orderOf_eq_zero_iff, isOfFinOrder_ofAdd_iff, Monoid.ExponentExists.isOfFinOrder, isOfFinOrder_pow, orderOf_ne_zero_iff, Monoid.not_isTorsion_iff, isOfFinOrder_of_finite, isOfFinAddOrder_ofMul_iff, Submonoid.isOfFinOrder_coe, not_isOfFinOrder_of_injective_pow, IsUnit.isOfFinOrder, orderOf_pos_iff, IsPrimitiveRoot.isOfFinOrder, CommGroup.mem_torsion, isMulTorsionFree_iff_not_isOfFinOrder, injective_zpow_iff_not_isOfFinOrder, isOfFinOrder_iff_pow_eq_one, IsOfFinOrder.one, isOfFinOrder_iff_isUnit, Function.Injective.isOfFinOrder_iff, infinite_powers, injective_pow_iff_not_isOfFinOrder
|
addOrderOf 📖 | CompOp | 142 mathmath: ZMod.addOrderOf_coe, mod_addOrderOf_nsmul, AddCommute.exists_addOrderOf_eq_lcm, addOrderOf_dvd_sub_iff_zsmul_eq_zsmul, AddCircle.exists_gcd_eq_one_of_isOfFinAddOrder, AddSubmonoid.addOrderOf_le_card, addOrderOf_eq_card_multiples, nsmul_finEquivZMultiples_symm_apply, addOrderOf_addSubmonoid, addOrderOf_eq_zero_iff, orderOf_ofAdd_eq_addOrderOf, addOrderOf_neg, IsAddUnit.addOrderOf_eq_zero, Pi.addOrderOf, IsAddCyclic.image_range_addOrderOf, nsmul_inj_mod, Nat.card_zmultiples, Prod.addOrderOf, AddMonoid.minOrder_le_addOrderOf, image_range_addOrderOf, mem_zmultiples_nsmul_iff, addOrderOf_eq_prime, addOrderOf_pos, IsOfFinAddOrder.mem_zmultiples_iff_mem_range_addOrderOf, IsAddCyclic.exists_ofOrder_eq_natCard, Pi.addOrderOf_eq_sInf, AddMonoid.exists_addOrderOf_eq_exponent, addOrderOf_addUnits, AddSemiconjBy.addOrderOf_eq, addOrderOf_le_card_univ, AddCommMonoid.primaryComponent.exists_orderOf_eq_prime_nsmul, AddMonoid.addOrderOf_eq_one_iff, nsmul_eq_nsmul_iff_modEq, AddCommute.addOrderOf_add_dvd_mul_addOrderOf, addOrderOf_eq_two_iff, addOrderOf_zero, IsOfFinAddOrder.addOrderOf_pos, AddMonoid.le_minOrder, IsOfFinAddOrder.addOrderOf_nsmul, addOrderOf_fst_dvd_addOrderOf, AddMonoid.exponent_eq_max'_addOrderOf, AddCircle.denseRange_zsmul_iff, AddMonoid.exponent_eq_prime_iff, AddCircle.ergodic_add_left, Infinite.addOrderOf_eq_zero_of_forall_mem_zmultiples, AddCircle.addOrderOf_div_of_gcd_eq_one, AddCircle.ergodic_add_right, addOrderOf_ofMul_eq_orderOf, addOrderOf_dvd_of_nsmul_eq_zero, IsOfFinAddOrder.natCard_multiples_le_addOrderOf, AddMonoid.exponent_dvd, addOrderOf_dvd_card, CharacterModule.intSpanEquivQuotAddOrderOf_symm_apply_coe, addOrderOf_le_of_nsmul_eq_zero, exists_addOrderOf_eq_prime_pow_iff, AddCircle.finite_setOf_addOrderOf_eq, CharacterModule.intSpanEquivQuotAddOrderOf_apply, zmultiplesHom_ker_eq, addOrderOf_injective, mem_approx_add_orderOf_iff, AddCommMonoid.coe_primaryComponent, IsOfFinAddOrder.val_neg_addUnit, AddCommute.addOrderOf_add_nsmul_eq_lcm, CharP.addOrderOf_one, AddCircle.card_addOrderOf_eq_totient, AddCommute.addOrderOf_add_dvd_lcm, IsOfFinAddOrder.nsmul_eq_nsmul_iff_modEq, finEquivMultiples_symm_apply, addOrderOf_eq_card_of_forall_mem_multiples, AddCircle.exists_norm_eq_of_isOfFinAddOrder, addOrderOf_nsmul', addOrderOf_dvd_natCard, addOrderOf_le_card, mod_addOrderOf_zsmul, AddCommute.addOrderOf_dvd_lcm_add, AddSubgroup.addOrderOf_coe, Nat.card_addSubmonoidMultiples, AddMonoid.addOrderOf_le_exponent, addOrderOf_dvd_of_mem_zmultiples, finEquivZMultiples_apply, exists_prime_addOrderOf_dvd_card, AddCircle.le_add_order_smul_norm_of_isOfFinAddOrder, addOrderOf_eq_card_of_forall_mem_zmultiples, IsAddCyclic.card_addOrderOf_eq_totient, finEquivZMultiples_symm_apply, addOrderOf_dvd_iff_nsmul_eq_zero, AddMonoid.ExponentExists.addOrderOf_pos, AddCommGroup.coe_primaryComponent, IsOfFinAddOrder.mem_multiples_iff_mem_range_addOrderOf, AddEquiv.addOrderOf_eq, addOrderOf_eq_card_of_zmultiples_eq_top, exists_prime_addOrderOf_dvd_card', addOrderOf_nsmul_eq_zero, zsmul_smul_addOrderOf, nsmul_eq_zero_iff_modEq, addOrderOf_eq_iff, ZMod.addOrderOf_coe', AddSubgroup.addOrderOf_dvd_natCard, addOrderOf_pos_iff, mem_zmultiples_iff_mem_range_addOrderOf, AddAction.period_dvd_addOrderOf, AddMonoid.exponent_eq_iSup_addOrderOf', finEquivMultiples_apply, IsOfFinAddOrder.multiples_eq_image_range_addOrderOf, addOrderOf_dvd_iff_zsmul_eq_zero, addOrderOf_eq_zero_iff', isAddCyclic_iff_exists_addOrderOf_eq_natCard, AddCircle.addOrderOf_eq_pos_iff, mem_zmultiples_zsmul_iff, Fintype.card_zmultiples, AddMonoid.lcm_addOrderOf_eq_exponent, addOrderOf_smul_dvd, card_addOrderOf_eq_totient_aux₂, addOrderOf_snd_dvd_addOrderOf, AddCircle.addOrderOf_period_div, Prod.addOrderOf_mk, ZMod.addOrderOf_one, AddCircle.addOrderOf_div_of_gcd_eq_one', isAddCyclic_iff_exists_natCard_le_addOrderOf, mem_multiples_iff_mem_range_addOrderOf, CharacterModule.intSpanEquivQuotAddOrderOf_apply_self, addOrderOf_eq_prime_iff, zsmul_eq_zsmul_iff_modEq, AddCircle.addOrderOf_coe_rat, Subsingleton.addOrderOf_eq, Nat.Prime.exists_addOrderOf_eq_pow_padic_val_nat_add_exponent, sum_card_addOrderOf_eq_card_nsmul_eq_zero, AddSubgroup.addOrderOf_mk, AddMonoid.lcm_addOrderOf_dvd_exponent, zsmul_eq_zero_iff_modEq, addOrderOf_nsmul, IsOfFinAddOrder.nsmul_inj_mod, addOrderOf_eq_prime_pow, addOrderOf_map_dvd, AddSubgroup.addOrderOf_le_card, addOrderOf_eq_zero, nsmul_injOn_Iio_addOrderOf, addOrderOf_eq_addOrderOf_iff, addOrderOf_eq_of_nsmul_and_div_prime_nsmul, AddCircle.gcd_mul_addOrderOf_div_eq, AddMonoid.addOrder_dvd_exponent, addOrderOf_apply_dvd_addOrderOf
|
addSubgroupOfIdempotent 📖 | CompOp | — |
addSubmonoidOfIdempotent 📖 | CompOp | — |
finEquivMultiples 📖 | CompOp | 2 mathmath: finEquivMultiples_symm_apply, finEquivMultiples_apply
|
finEquivPowers 📖 | CompOp | 2 mathmath: finEquivPowers_apply, finEquivPowers_symm_apply
|
finEquivZMultiples 📖 | CompOp | 3 mathmath: nsmul_finEquivZMultiples_symm_apply, finEquivZMultiples_apply, finEquivZMultiples_symm_apply
|
finEquivZPowers 📖 | CompOp | 3 mathmath: finEquivZPowers_symm_apply, pow_finEquivZPowers_symm_apply, finEquivZPowers_apply
|
multiplesEquivMultiples 📖 | CompOp | 1 mathmath: multiplesEquivMultiples_apply
|
nsmulCoprime 📖 | CompOp | 4 mathmath: nsmulCoprime_neg, nsmulCoprime_symm_apply, nsmulCoprime_zero, nsmulCoprime_apply
|
orderOf 📖 | CompOp | 186 mathmath: orderOf_map_dvd, orderOf_lt_card, Monoid.exists_orderOf_eq_exponent, Nat.Prime.exists_orderOf_eq_pow_factorization_exponent, mem_zpowers_iff_mem_range_orderOf, IsOfFinOrder.natCard_powers_le_orderOf, DihedralGroup.orderOf_r, IsPrimitiveRoot.eq_orderOf, IsCyclic.image_range_orderOf, orderOf_eq_card_of_forall_mem_zpowers, QuaternionGroup.orderOf_a_one, MulChar.exists_mulChar_orderOf, finEquivZPowers_symm_apply, orderOf_dvd_of_mem_zpowers, orderOf_ofAdd_eq_addOrderOf, ZMod.orderOf_one_add_mul_prime, finEquivPowers_apply, IsPrimitiveRoot.orderOf, IsOfFinOrder.orderOf_pos, Commute.orderOf_mul_dvd_mul_orderOf, minpoly_algHom_toLinearMap, Subsingleton.orderOf_eq, Equiv.Perm.IsCycle.pow_iff, orderOf_pow_dvd, zpow_mod_orderOf, FiniteField.orderOf_frobeniusAlgEquivOfAlgebraic, orderOf_eq_card_of_forall_mem_powers, Polynomial.natDegree_of_dvd_cyclotomic_of_irreducible, pow_mod_orderOf, orderOf_le_card, orderOf_units, orderOf_le_card_univ, Commute.exists_orderOf_eq_lcm, Commute.orderOf_dvd_lcm_mul, orderOf_eq_of_pow_and_pow_div_prime, IsOfFinOrder.orderOf_pow, isCyclic_iff_exists_natCard_le_orderOf, Monoid.exponent_dvd, pow_finEquivZPowers_symm_apply, NumberField.IsCMField.orderOf_complexConj, orderOf_zero, Monoid.ExponentExists.orderOf_pos, mem_approxOrderOf_iff, MulChar.orderOf_dvd_card_sub_one, zpow_eq_one_iff_modEq, orderOf_submonoid, CommGroup.coe_primaryComponent, Subgroup.orderOf_mk, Equiv.Perm.SameCycle.exists_pow_eq', zpow_pow_orderOf, IsPGroup.orderOf_coprime, IsCyclotomicExtension.Rat.inertiaDegIn_of_not_dvd, orderOf_pow', Equiv.Perm.SameCycle.exists_fin_pow_eq, orderOf_dvd_natCard, pow_injOn_Iio_orderOf, orderOf_dvd_of_pow_eq_one, CharP.orderOf_eq_two_iff, IsOfFinOrder.mem_powers_iff_mem_range_orderOf, orderOf_one, addOrderOf_ofMul_eq_orderOf, Monoid.order_dvd_exponent, orderOf_eq_zero_iff, IsCyclic.exists_ofOrder_eq_natCard, orderOf_eq_prime, IsOfFinOrder.mem_zpowers_iff_mem_range_orderOf, orderOf_eq_iff, MulChar.exists_mulChar_orderOf_eq_card_units, Equiv.Perm.IsSwap.orderOf, pow_eq_pow_iff_modEq, orderOf_dvd_card, orderOf_eq_prime_iff, Nat.card_submonoidPowers, mem_powers_iff_mem_range_orderOf, QuaternionGroup.orderOf_xa, QuaternionGroup.orderOf_a, isCyclic_iff_exists_orderOf_eq_natCard, Monoid.lcm_orderOf_eq_exponent, Monoid.lcm_orderOf_dvd_exponent, Equiv.Perm.IsCycle.support_pow_eq_iff, orderOf_eq_prime_pow, DihedralGroup.orderOf_sr, DihedralGroup.orderOf_r_one, IsCyclotomicExtension.Rat.inertiaDeg_eq, Equiv.Perm.IsCycle.orderOf, Equiv.Perm.lcm_cycleType, IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_not_dvd, orderOf_snd_dvd_orderOf, orderOf_pow, Commute.orderOf_mul_dvd_lcm, exists_prime_orderOf_dvd_card, MonoidHom.FixedPointFree.odd_orderOf_of_involutive, Pi.orderOf, exists_orderOf_eq_prime_pow_iff, ZMod.orderOf_one_add_four_mul, pow_orderOf_eq_one, mem_zpowers_pow_iff, IsPrimitiveRoot.iff_orderOf, IsUnit.orderOf_eq_one, orderOf_fst_dvd_orderOf, Prod.orderOf_mk, Pi.orderOf_eq_sInf, IsOfFinOrder.pow_inj_mod, orderOf_eq_card_powers, IsCyclic.card_orderOf_eq_totient, orderOf_piMulSingle, ZMod.orderOf_one_add_prime, Monoid.exponent_eq_max'_orderOf, IsPGroup.powEquiv_symm_apply, gaussSum_mul_gaussSum_pow_orderOf_sub_one, SemiconjBy.orderOf_eq, LucasLehmer.order_ω, orderOf_neg_one, Nat.card_zpowers, MulEquiv.orderOf_eq, Equiv.Perm.dvd_of_mem_cycleType, exists_prime_orderOf_dvd_card', IsCyclotomicExtension.Rat.inertiaDegIn_eq, mem_zpowers_zpow_iff, ZMod.orderOf_dvd_card_sub_one, orderOf_eq_card_of_zpowers_eq_top, ZMod.orderOf_one_add_mul_prime_pow, MulChar.orderOf_pos, finEquivZPowers_apply, card_orderOf_eq_totient_aux₂, Infinite.orderOf_eq_zero_of_forall_mem_zpowers, Equiv.Perm.IsThreeCycle.orderOf, orderOf_dvd_sub_iff_zpow_eq_zpow, minpoly_algEquiv_toLinearMap, image_range_orderOf, orderOf_pos_iff, orderOf_dvd_iff_zpow_eq_one, ZMod.orderOf_lt, orderOf_eq_zero_iff_eq_zero, ZMod.orderOf_five, IsOfFinOrder.pow_eq_pow_iff_modEq, Monoid.exponent_eq_prime_iff, Polynomial.natDegree_of_mem_normalizedFactors_cyclotomic, IsOfFinOrder.powers_eq_image_range_orderOf, Polynomial.orderOf_root_cyclotomic_dvd, orderOf_inv, IsOfFinOrder.val_inv_unit, orderOf_eq_zero_iff', IsPGroup.iff_orderOf, zpowersHom_ker_eq, Equiv.Perm.Disjoint.orderOf, CommMonoid.primaryComponent.exists_orderOf_eq_prime_pow, Equiv.Perm.orderOf_cycleOf_dvd_orderOf, zpow_eq_zpow_iff_modEq, IsCyclotomicExtension.Rat.inertiaDeg_of_not_dvd, Subgroup.orderOf_le_card, MulAction.period_dvd_orderOf, Subgroup.orderOf_dvd_natCard, Equiv.Perm.pow_mod_orderOf_cycleOf_apply, MulChar.apply_mem_rootsOfUnity_orderOf, Monoid.le_minOrder, orderOf_eq_zero, FiniteField.orderOf_frobeniusAlgHom, IsCyclotomicExtension.Rat.inertiaDeg_eq_of_not_dvd, Fintype.card_zpowers, orderOf_dvd_iff_pow_eq_one, orderOf_pos, Equiv.Perm.SameCycle.exists_pow_eq'', ZMod.orderOf_units_dvd_card_sub_one, sum_card_orderOf_eq_card_pow_eq_one, orderOf_apply_dvd_orderOf, orderOf_injective, orderOf_eq_one_iff, Monoid.minOrder_le_orderOf, Monoid.exponent_eq_iSup_orderOf', orderOf_le_of_pow_eq_one, finEquivPowers_symm_apply, Polynomial.normalizedFactors_cyclotomic_card, NumberField.ComplexEmbedding.orderOf_isConj_two_of_ne_one, Prod.orderOf, orderOf_abs_ne_one, orderOf_eq_orderOf_iff, pow_eq_one_iff_modEq, Subgroup.orderOf_coe, Submonoid.orderOf_le_card, Monoid.orderOf_le_exponent, LinearOrderedRing.orderOf_le_two, orderOf_eq_two_iff, Commute.orderOf_mul_pow_eq_lcm, CommMonoid.coe_primaryComponent, pow_inj_mod
|
powCardSubgroup 📖 | CompOp | 1 mathmath: coe_powCardSubgroup
|
powCoprime 📖 | CompOp | 4 mathmath: powCoprime_symm_apply, powCoprime_inv, powCoprime_one, powCoprime_apply
|
powersEquivPowers 📖 | CompOp | 1 mathmath: powersEquivPowers_apply
|
smulCardAddSubgroup 📖 | CompOp | 1 mathmath: coe_smulCardAddSubgroup
|
subgroupOfIdempotent 📖 | CompOp | — |
submonoidOfIdempotent 📖 | CompOp | — |
zmultiplesEquivZMultiples 📖 | CompOp | 1 mathmath: zmultiples_equiv_zmultiples_apply
|
zpowersEquivZPowers 📖 | CompOp | 1 mathmath: zpowersEquivZPowers_apply
|