Documentation Verification Report

Min

📁 Source: Mathlib/GroupTheory/Order/Min.lean

Statistics

MetricCount
DefinitionsminOrder, minOrder
2
Theoremsle_minOrder, le_minOrder_iff_forall_addSubgroup, minOrder_eq_top, minOrder_eq_top_iff, minOrder_le_addOrderOf, minOrder_le_natCard, le_minOrder, le_minOrder_iff_forall_subgroup, minOrder_eq_top, minOrder_eq_top_iff, minOrder_le_natCard, minOrder_le_orderOf, minOrder, minOrder_of_prime
14
Total16

AddMonoid

Definitions

NameCategoryTheorems
minOrder 📖CompOp
9 mathmath: minOrder_le_addOrderOf, ZMod.minOrder_of_prime, ZMod.minOrder, le_minOrder, le_minOrder_iff_forall_addSubgroup, minOrder_eq_top_iff, cauchy_davenport_minOrder_add, minOrder_eq_top, minOrder_le_natCard

Theorems

NameKindAssumesProvesValidatesDepends On
le_minOrder 📖mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
minOrder
ENat.instNatCast
addOrderOf
le_iInf_iff
le_minOrder_iff_forall_addSubgroup 📖mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
minOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
ENat.instNatCast
Nat.card
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
le_minOrder
AddSubgroup.bot_or_exists_ne_zero
LE.le.trans
finite_zmultiples
Set.Finite.subset
AddSubgroup.zmultiples_le
WithTop.coe_le_coe
AddSubgroup.addOrderOf_le_card
Nat.card_zmultiples
AddSubgroup.zmultiples_ne_bot
IsOfFinAddOrder.finite_zmultiples
minOrder_eq_top 📖mathematicalminOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Top.top
ENat
instTopENat
iInf_eq_top
ENat.coe_ne_top
not_isOfFinAddOrder_of_isAddTorsionFree
minOrder_eq_top_iff 📖mathematicalminOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Top.top
ENat
instTopENat
IsAddTorsionFree
iInf_eq_top
ENat.coe_ne_top
isAddTorsionFree_iff_not_isOfFinAddOrder
minOrder_le_addOrderOf 📖mathematicalIsOfFinAddOrderENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
minOrder
ENat.instNatCast
addOrderOf
le_minOrder
le_rfl
minOrder_le_natCard 📖mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
minOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
ENat.instNatCast
Nat.card
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
le_minOrder_iff_forall_addSubgroup
le_rfl

Monoid

Definitions

NameCategoryTheorems
minOrder 📖CompOp
7 mathmath: minOrder_le_natCard, le_minOrder_iff_forall_subgroup, le_minOrder, cauchy_davenport_minOrder_mul, minOrder_le_orderOf, minOrder_eq_top, minOrder_eq_top_iff

Theorems

NameKindAssumesProvesValidatesDepends On
le_minOrder 📖mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
minOrder
ENat.instNatCast
orderOf
le_minOrder_iff_forall_subgroup 📖mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
minOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ENat.instNatCast
Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
le_minOrder
Subgroup.bot_or_exists_ne_one
LE.le.trans
finite_zpowers
Set.Finite.subset
Subgroup.zpowers_le
WithTop.coe_le_coe
Subgroup.orderOf_le_card
Nat.card_zpowers
Subgroup.zpowers_ne_bot
IsOfFinOrder.finite_zpowers
minOrder_eq_top 📖mathematicalminOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Top.top
ENat
instTopENat
not_isOfFinOrder_of_isMulTorsionFree
minOrder_eq_top_iff 📖mathematicalminOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Top.top
ENat
instTopENat
IsMulTorsionFree
minOrder_le_natCard 📖mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
minOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ENat.instNatCast
Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
le_minOrder_iff_forall_subgroup
le_rfl
minOrder_le_orderOf 📖mathematicalIsOfFinOrderENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
minOrder
ENat.instNatCast
orderOf
le_minOrder
le_rfl

ZMod

Theorems

NameKindAssumesProvesValidatesDepends On
minOrder 📖mathematicalAddMonoid.minOrder
ZMod
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
commRing
ENat
ENat.instNatCast
Nat.minFac
ringChar.spec
ringChar.eq
charP
Nat.minFac_le
Ne.bot_lt
Nat.minFac_pos
Nat.Prime.one_lt
Nat.minFac_prime
LE.le.antisymm
LE.le.trans
AddMonoid.minOrder_le_natCard
Iff.not
AddSubgroup.zmultiples_eq_bot
Set.toFinite
Subtype.finite
Finite.of_fintype
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.card_zmultiples
addOrderOf_coe
Nat.minFac_dvd
le_refl
AddMonoid.le_minOrder_iff_forall_addSubgroup
WithTop.coe_le_coe
Nat.minFac_le_of_dvd
Finite.one_lt_card
AddSubgroup.instFiniteSubtypeMem
AddSubgroup.bot_or_nontrivial
Dvd.dvd.trans
AddSubgroup.card_addSubgroup_dvd_card
Eq.dvd
Nat.card_zmod
minOrder_of_prime 📖mathematicalNat.PrimeAddMonoid.minOrder
ZMod
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
commRing
ENat
ENat.instNatCast
minOrder
Nat.Prime.ne_zero
Nat.Prime.ne_one
Nat.Prime.minFac_eq

---

← Back to Index