Documentation Verification Report

PGroup

πŸ“ Source: Mathlib/GroupTheory/PGroup.lean

Statistics

MetricCount
DefinitionsIsPGroup, commGroupOfCardEqPrimeSq, powEquiv, powEquiv'
4
Theoremsbot_lt_center, card_center_eq_prime_pow, card_eq_or_dvd, card_modEq_card_fixedPoints, card_orbit, center_nontrivial, comap_of_injective, comap_of_ker_isPGroup, comap_subtype, commutative_of_card_eq_prime_sq, coprime_card_of_ne, cyclic_center_quotient_of_card_eq_prime_sq, disjoint_of_ne, exists_card_eq, exists_fixed_point_of_prime_dvd_card_of_fixed_point, iff_card, iff_orderOf, index, ker_isPGroup_of_injective, le_or_disjoint_of_coprime, map, nonempty_fixed_point_of_prime_not_dvd_card, nontrivial_iff_card, of_bot, of_card, of_equiv, of_injective, of_surjective, orderOf_coprime, powEquiv_apply, powEquiv_symm_apply, to_inf_left, to_inf_right, to_le, to_quotient, to_subgroup, to_sup_of_normal_left, to_sup_of_normal_left', to_sup_of_normal_right, to_sup_of_normal_right', isPGroup_multiplicative
41
Total45

IsPGroup

Definitions

NameCategoryTheorems
commGroupOfCardEqPrimeSq πŸ“–CompOpβ€”
powEquiv πŸ“–CompOp
2 mathmath: powEquiv_apply, powEquiv_symm_apply
powEquiv' πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bot_lt_center πŸ“–mathematicalIsPGroupSubgroup
Preorder.toLT
PartialOrder.toPreorder
Subgroup.instPartialOrder
Bot.bot
Subgroup.instBot
Subgroup.center
β€”bot_lt_iff_ne_bot
Subgroup.one_lt_card_iff_ne_bot
Subgroup.instFiniteSubtypeMem
Finite.one_lt_card
center_nontrivial
card_center_eq_prime_pow πŸ“–mathematicalNat.card
Monoid.toNatPow
Nat.instMonoid
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.center
β€”Nat.finite_of_card_ne_zero
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
NeZero.of_gt'
Nat.Prime.one_lt'
to_subgroup
of_card
nontrivial_iff_card
Subgroup.instFiniteSubtypeMem
center_nontrivial
card_eq_or_dvd πŸ“–mathematicalIsPGroupNat.cardβ€”finite_or_infinite
iff_card
pow_succ'
Nat.card_eq_zero_of_infinite
card_modEq_card_fixedPoints πŸ“–mathematicalIsPGroupNat.ModEq
Nat.card
Set.Elem
MulAction.fixedPoints
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”Subtype.finite
Nat.card_eq_fintype_card
Fintype.card_congr
Fintype.card_sigma
ZMod.natCast_eq_natCast_iff
Nat.cast_sum
Fintype.card_congr'
Finset.sum_bij_ne_zero
Finset.mem_univ
MulAction.mem_fixedPoints'
Quotient.exact'
Quotient.inductionOn'
card_orbit
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Nat.cast_pow
CharP.cast_eq_zero
ZMod.charP
zero_pow
MulAction.mem_fixedPoints_iff_card_orbit_eq_one
pow_zero
ne_of_eq_of_ne
Nat.cast_one
one_ne_zero
NeZero.one
ZMod.nontrivial
Nat.Prime.one_lt'
Finset.sum_const
mul_one
card_orbit πŸ“–mathematicalIsPGroupNat.card
Set.Elem
MulAction.orbit
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Monoid.toNatPow
Nat.instMonoid
β€”Nat.card_congr
index
Subgroup.finiteIndex_of_finite_quotient
Finite.of_equiv
center_nontrivial πŸ“–mathematicalIsPGroupNontrivial
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.center
β€”exists_fixed_point_of_prime_dvd_card_of_fixed_point
of_equiv
nontrivial_iff_card
dvd_pow_self
ne_of_gt
ConjAct.fixedPoints_eq_center
Subgroup.one_mem
comap_of_injective πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
Subgroup.comapβ€”comap_of_ker_isPGroup
ker_isPGroup_of_injective
comap_of_ker_isPGroup πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.comapβ€”MonoidHom.map_pow
Subgroup.coe_pow
pow_add
pow_mul
comap_subtype πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.comap
Subgroup.subtype
β€”comap_of_injective
Subtype.coe_injective
commutative_of_card_eq_prime_sq πŸ“–mathematicalNat.card
Monoid.toNatPow
Nat.instMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”CommGroup.mul_comm
coprime_card_of_ne πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Nat.cardβ€”iff_card
Nat.coprime_pow_primes
Fact.elim
cyclic_center_quotient_of_card_eq_prime_sq πŸ“–mathematicalNat.card
Monoid.toNatPow
Nat.instMonoid
IsCyclic
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
Subgroup.center
DivInvMonoid.toZPow
Group.toDivInvMonoid
QuotientGroup.Quotient.group
Subgroup.instNormalCenter
β€”isCyclic_of_card_dvd_prime
Subgroup.instNormalCenter
mul_dvd_mul_iff_left
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
sq
Subgroup.card_mul_index
mul_dvd_mul_right
card_center_eq_prime_pow
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
dvd_pow_self
LT.lt.ne'
disjoint_of_ne πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Disjoint
Subgroup.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
β€”Subgroup.disjoint_def
iff_orderOf
pow_zero
eq_of_prime_pow_eq
Nat.instIsCancelMulZero
Unique.instSubsingleton
Nat.Prime.prime
Fact.out
exists_card_eq πŸ“–mathematicalIsPGroupNat.card
Monoid.toNatPow
Nat.instMonoid
β€”iff_card
exists_fixed_point_of_prime_dvd_card_of_fixed_point πŸ“–β€”IsPGroup
Nat.card
Set
Set.instMembership
MulAction.fixedPoints
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”β€”Nat.modEq_zero_iff_dvd
Nat.ModEq.trans
Nat.ModEq.symm
card_modEq_card_fixedPoints
Dvd.dvd.modEq_zero_nat
LT.lt.trans_le
Nat.Prime.one_lt
Fact.out
Finite.card_pos_iff
Subtype.finite
exists_ne
Finite.one_lt_card_iff_nontrivial
iff_card πŸ“–mathematicalβ€”IsPGroup
Nat.card
Monoid.toNatPow
Nat.instMonoid
β€”LT.lt.ne'
Nat.card_pos
One.instNonempty
Nat.mem_primeFactorsList
exists_prime_orderOf_dvd_card'
iff_orderOf
Nat.Prime.pow_eq_iff
List.prod_replicate
Nat.prod_primeFactorsList
of_card
iff_orderOf πŸ“–mathematicalβ€”IsPGroup
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Monoid.toNatPow
Nat.instMonoid
β€”Nat.dvd_prime_pow
Fact.out
orderOf_dvd_of_pow_eq_one
pow_orderOf_eq_one
index πŸ“–mathematicalIsPGroupSubgroup.index
Monoid.toNatPow
Nat.instMonoid
β€”Subgroup.normalCore_normal
iff_card
Subgroup.finite_quotient_of_finiteIndex
Subgroup.finiteIndex_normalCore
to_quotient
Nat.dvd_prime_pow
Fact.out
Subgroup.index_eq_card
Subgroup.index_dvd_of_le
Subgroup.normalCore_le
ker_isPGroup_of_injective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
IsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MonoidHom.ker
Subgroup.toGroup
β€”MonoidHom.ker_eq_bot_iff
of_bot
le_or_disjoint_of_coprime πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Nat.card
Subgroup.index
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Disjoint
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
β€”Subgroup.index_eq_one
le_top
Subgroup.card_eq_one
disjoint_bot_left
Nat.finite_of_card_ne_zero
Subgroup.card_mul_index
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
exists_card_eq
Subgroup.instFiniteSubtypeMem
Nat.Prime.coprime_pow_of_not_dvd
Fact.out
Mathlib.Tactic.Contrapose.contrapose₁
Nat.Prime.not_coprime_iff_dvd
Subgroup.relIndex_eq_one
Nat.eq_one_of_dvd_coprimes
Subgroup.relIndex_dvd_index_of_normal
Subgroup.relIndex_dvd_card
disjoint_iff
Subgroup.inf_eq_bot_of_coprime
map πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.mapβ€”Subgroup.range_subtype
MonoidHom.map_range
of_surjective
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
MonoidHom.rangeRestrict_surjective
nonempty_fixed_point_of_prime_not_dvd_card πŸ“–mathematicalIsPGroup
Nat.card
Set.Nonempty
MulAction.fixedPoints
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”Nat.finite_of_card_ne_zero
dvd_zero
Set.Nonempty.of_subtype
Finite.card_pos_iff
Subtype.finite
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
Mathlib.Tactic.Contrapose.contraposeβ‚„
Nat.modEq_zero_iff_dvd
card_modEq_card_fixedPoints
nontrivial_iff_card πŸ“–mathematicalIsPGroupNontrivial
Nat.card
Monoid.toNatPow
Nat.instMonoid
β€”iff_card
LT.lt.ne'
Finite.one_lt_card
pow_zero
Finite.one_lt_card_iff_nontrivial
one_lt_powβ‚€
Nat.instZeroLEOneClass
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.Prime.one_lt
Fact.out
ne_of_gt
of_bot πŸ“–mathematicalβ€”IsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Bot.bot
Subgroup.instBot
Subgroup.toGroup
β€”of_card
Subgroup.card_bot
pow_zero
of_card πŸ“–mathematicalNat.card
Monoid.toNatPow
Nat.instMonoid
IsPGroupβ€”pow_card_eq_one'
of_equiv πŸ“–β€”IsPGroupβ€”β€”of_surjective
MulEquiv.surjective
of_injective πŸ“–β€”IsPGroup
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
β€”β€”MonoidHom.map_pow
MonoidHom.map_one
of_surjective πŸ“–β€”IsPGroup
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
β€”β€”MonoidHom.map_pow
MonoidHom.map_one
orderOf_coprime πŸ“–mathematicalIsPGrouporderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”orderOf_dvd_of_pow_eq_one
powEquiv_apply πŸ“–mathematicalIsPGroupDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
powEquiv
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”β€”
powEquiv_symm_apply πŸ“–mathematicalIsPGroupDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
powEquiv
DivInvMonoid.toZPow
Group.toDivInvMonoid
Nat.gcdB
orderOf
DivInvMonoid.toMonoid
β€”Nat.card_zpowers
to_inf_left πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.instMinβ€”to_le
inf_le_left
to_inf_right πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.instMinβ€”to_le
inf_le_right
to_le πŸ“–β€”IsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
β€”β€”of_injective
to_quotient πŸ“–mathematicalIsPGroupHasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
QuotientGroup.Quotient.group
β€”of_surjective
Quotient.mk''_surjective
to_subgroup πŸ“–mathematicalIsPGroupSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
β€”of_injective
Subtype.coe_injective
to_sup_of_normal_left πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Subgroup.instCompleteLattice
β€”to_sup_of_normal_right
sup_comm
to_sup_of_normal_left' πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.normalizer
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Subgroup.instCompleteLattice
β€”to_sup_of_normal_right'
sup_comm
to_sup_of_normal_right πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Subgroup.instCompleteLattice
β€”QuotientGroup.ker_mk'
Subgroup.comap_map_eq
comap_of_ker_isPGroup
map
to_sup_of_normal_right' πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.normalizer
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Subgroup.instCompleteLattice
β€”to_sup_of_normal_right
of_equiv
Subgroup.le_normalizer
Subgroup.normal_in_normalizer
Subgroup.subgroupOf_sup
sup_le

ZModModule

Theorems

NameKindAssumesProvesValidatesDepends On
isPGroup_multiplicative πŸ“–mathematicalβ€”IsPGroup
Multiplicative
Multiplicative.group
AddCommGroup.toAddGroup
β€”pow_one
char_nsmul_eq_zero

(root)

Definitions

NameCategoryTheorems
IsPGroup πŸ“–MathDef
8 mathmath: Sylow.isPGroup', IsPGroup.iff_card, ZModModule.isPGroup_multiplicative, IsPGroup.ker_isPGroup_of_injective, IsPGroup.of_bot, CommGroup.primaryComponent.isPGroup, IsPGroup.iff_orderOf, IsPGroup.of_card

---

← Back to Index