Documentation Verification Report

Centralizer

πŸ“ Source: Mathlib/GroupTheory/Perm/Centralizer.lean

Statistics

MetricCount
DefinitionsofPermHom, ofPermHomFun, toCentralizer, toFun, cycleFactorsFinset_mulAction, instMulActionSubtypeMemSubgroupCentralizerSingletonSetFinsetCycleFactorsFinset, kerParam, range_toPermHom', toPermHom, instFunLikeBasisSubtypeMemFinsetCycleFactorsFinset
10
Theoremscard_ofPermHom_support, cycleOf_eq, injective, mem_fixedPoints_or_exists_zpow_eq, mem_support_self, mem_support_self', nonempty, ofPermHomFun_apply_mem_support_cycle_iff, ofPermHomFun_apply_of_cycleOf_mem, ofPermHomFun_apply_of_mem_fixedPoints, ofPermHomFun_commute_zpow_apply, ofPermHomFun_mul, ofPermHomFun_one, ofPermHom_apply, ofPermHom_mem_centralizer, ofPermHom_support, sameCycle, toCentralizer_apply, toCentralizer_equivariant, toPermHom_apply_toCentralizer, toConjAct_smul_mem_cycleFactorsFinset, centralizer_smul_def, coe_toPermHom, cycleType_kerParam_apply_apply, kerParam_apply, kerParam_injective, kerParam_range_card, kerParam_range_eq, kerParam_range_le_centralizer, mem_ker_toPermHom_iff, mem_range_toPermHom'_iff, mem_range_toPermHom_iff, mem_range_toPermHom_iff', nat_card_range_toPermHom, range_toPermHom_eq_range_toPermHom', sign_kerParam_apply_apply, toPermHom_apply, val_centralizer_smul, card_isConj_eq, card_isConj_mul_eq, card_of_cycleType, card_of_cycleType_eq_zero_iff, card_of_cycleType_mul_eq, card_of_cycleType_singleton, nat_card_centralizer
45
Total55

Equiv.Perm

Definitions

NameCategoryTheorems
instFunLikeBasisSubtypeMemFinsetCycleFactorsFinset πŸ“–CompOp
5 mathmath: Basis.injective, Basis.sameCycle, Basis.mem_support_self, Basis.mem_fixedPoints_or_exists_zpow_eq, Basis.cycleOf_eq

Theorems

NameKindAssumesProvesValidatesDepends On
card_isConj_eq πŸ“–mathematicalβ€”Nat.card
Set.Elem
Equiv.Perm
setOf
IsConj
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Nat.factorial
Fintype.card
Multiset.sum
Nat.instAddCommMonoid
cycleType
Multiset.prod
Nat.instCommMonoid
Finset.prod
Multiset.toFinset
Multiset.count
β€”card_isConj_mul_eq
nat_card_centralizer
Nat.card_pos
One.instNonempty
Subgroup.instFiniteSubtypeMem
Equiv.finite_left
Finite.of_fintype
card_isConj_mul_eq πŸ“–mathematicalβ€”Nat.card
Set.Elem
Equiv.Perm
setOf
IsConj
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Nat.factorial
Fintype.card
Multiset.sum
Nat.instAddCommMonoid
cycleType
Multiset.prod
Nat.instCommMonoid
Finset.prod
Multiset.toFinset
Multiset.count
β€”Nat.card_eq_fintype_card
nat_card_centralizer
Subgroup.nat_card_centralizer_nat_card_stabilizer
Fintype.card_congr'
Set.ext
ConjAct.card
Fintype.card_perm
MulAction.card_orbit_mul_card_stabilizer_eq_card_group
card_of_cycleType πŸ“–mathematicalβ€”Finset.card
Equiv.Perm
Finset.filter
Multiset
cycleType
Multiset.decidableEq
Finset.univ
Equiv.instFintype
Multiset.sum
Nat.instAddCommMonoid
Fintype.card
Multiset.decidableDforallMultiset
Nat.factorial
Multiset.prod
Nat.instCommMonoid
Finset.prod
Multiset.toFinset
Multiset.count
β€”symm
IsEquiv.toSymm
eq_isEquiv
Multiset.prod_pos
Nat.instZeroLEOneClass
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
LT.lt.trans_le
Nat.instAtLeastTwoHAddOfNat
zero_lt_two
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
mul_pos
Nat.factorial_pos
Finset.prod_pos
Nat.instNontrivial
card_of_cycleType_mul_eq
card_of_cycleType_eq_zero_iff
card_of_cycleType_eq_zero_iff πŸ“–mathematicalβ€”Finset.card
Equiv.Perm
Finset.filter
Multiset
cycleType
Multiset.decidableEq
Finset.univ
Equiv.instFintype
Multiset.sum
Nat.instAddCommMonoid
Fintype.card
β€”Finset.card_eq_zero
Finset.filter_eq_empty_iff
exists_with_cycleType_iff
card_of_cycleType_mul_eq πŸ“–mathematicalβ€”Finset.card
Equiv.Perm
Finset.filter
Multiset
cycleType
Multiset.decidableEq
Finset.univ
Equiv.instFintype
Nat.factorial
Fintype.card
Multiset.sum
Nat.instAddCommMonoid
Multiset.prod
Nat.instCommMonoid
Finset.prod
Multiset.toFinset
Multiset.count
Multiset.decidableDforallMultiset
β€”exists_with_cycleType_iff
Nat.card_eq_fintype_card
Fintype.card_congr'
isConj_comm
card_isConj_mul_eq
card_of_cycleType_eq_zero_iff
MulZeroClass.zero_mul
card_of_cycleType_singleton πŸ“–mathematicalFintype.cardFinset.card
Equiv.Perm
Finset.filter
Multiset
cycleType
Multiset.instSingleton
Multiset.decidableEq
Finset.univ
Equiv.instFintype
Nat.factorial
Nat.choose
β€”mul_comm
Nat.mul_factorial_pred
mul_assoc
Nat.factorial_ne_zero
Nat.choose_mul_factorial_mul_factorial
Multiset.sum_singleton
Multiset.prod_singleton
Finset.prod_congr
Multiset.toFinset_singleton
Finset.prod_singleton
Multiset.count_eq_one_of_mem
mul_one
ite_and
card_of_cycleType_mul_eq
nat_card_centralizer πŸ“–mathematicalβ€”Nat.card
Equiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.centralizer
Set
Set.instSingletonSet
Nat.factorial
Fintype.card
Multiset.sum
Nat.instAddCommMonoid
cycleType
Multiset.prod
Nat.instCommMonoid
Finset.prod
Multiset.toFinset
Multiset.count
β€”Subgroup.card_mul_index
Subgroup.index_ker
OnCycleFactors.nat_card_range_toPermHom
OnCycleFactors.kerParam_range_card
Nat.card_eq_fintype_card
OnCycleFactors.kerParam_range_eq
Subgroup.card_subtype

Equiv.Perm.Basis

Definitions

NameCategoryTheorems
ofPermHom πŸ“–CompOp
4 mathmath: card_ofPermHom_support, ofPermHom_apply, ofPermHom_mem_centralizer, ofPermHom_support
ofPermHomFun πŸ“–CompOp
8 mathmath: toCentralizer_apply, ofPermHom_apply, ofPermHomFun_commute_zpow_apply, ofPermHomFun_apply_mem_support_cycle_iff, ofPermHomFun_apply_of_mem_fixedPoints, ofPermHomFun_apply_of_cycleOf_mem, ofPermHomFun_mul, ofPermHomFun_one
toCentralizer πŸ“–CompOp
3 mathmath: toCentralizer_equivariant, toCentralizer_apply, toPermHom_apply_toCentralizer
toFun πŸ“–CompOp
1 mathmath: mem_support_self'

Theorems

NameKindAssumesProvesValidatesDepends On
card_ofPermHom_support πŸ“–mathematicalβ€”Finset.card
Equiv.Perm.support
DFunLike.coe
MonoidHom
Equiv.Perm
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Equiv.Perm.permGroup
Subgroup.instSetLike
Equiv.Perm.OnCycleFactors.range_toPermHom'
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MonoidHom.instFunLike
ofPermHom
Finset.sum
Nat.instAddCommMonoid
Fintype.decidableEqEquivFintype
Finset.Subtype.fintype
β€”ofPermHom_support
Finset.card_biUnion
Equiv.Perm.Disjoint.disjoint_support
Equiv.Perm.cycleFactorsFinset_pairwise_disjoint
Subtype.prop
Subtype.coe_ne_coe
cycleOf_eq πŸ“–mathematicalβ€”Equiv.Perm.cycleOf
Equiv.Perm.instDecidableRelSameCycle
DFunLike.coe
Equiv.Perm.Basis
Equiv.Perm
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Equiv.Perm.instFunLikeBasisSubtypeMemFinsetCycleFactorsFinset
β€”Equiv.Perm.cycle_is_cycleOf
mem_support_self
Subtype.prop
injective πŸ“–mathematicalβ€”Equiv.Perm
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
DFunLike.coe
Equiv.Perm.Basis
Equiv.Perm.instFunLikeBasisSubtypeMemFinsetCycleFactorsFinset
β€”Set.Pairwise.eq
Equiv.Perm.cycleFactorsFinset_pairwise_disjoint
Subtype.prop
mem_support_self
mem_fixedPoints_or_exists_zpow_eq πŸ“–mathematicalβ€”Set
Set.instMembership
Function.fixedPoints
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
DivInvMonoid.toZPow
Group.toDivInvMonoid
Equiv.Perm.permGroup
Equiv.Perm.Basis
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Equiv.Perm.instFunLikeBasisSubtypeMemFinsetCycleFactorsFinset
β€”Equiv.Perm.cycleOf_mem_cycleFactorsFinset_iff
Equiv.Perm.mem_support
Function.mem_fixedPoints_iff
Equiv.Perm.mem_support_cycleOf_iff
sameCycle
mem_support_self πŸ“–mathematicalβ€”Finset
Finset.instMembership
Equiv.Perm.support
Equiv.Perm
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
DFunLike.coe
Equiv.Perm.Basis
Equiv.Perm.instFunLikeBasisSubtypeMemFinsetCycleFactorsFinset
β€”mem_support_self'
mem_support_self' πŸ“–mathematicalβ€”Finset
Finset.instMembership
Equiv.Perm.support
Equiv.Perm
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
toFun
β€”β€”
nonempty πŸ“–mathematicalβ€”Equiv.Perm.Basisβ€”Equiv.Perm.IsCycle.nonempty_support
Equiv.Perm.mem_cycleFactorsFinset_iff
Subtype.prop
ofPermHomFun_apply_mem_support_cycle_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
Equiv.Perm.support
Equiv.Perm
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
Subgroup
Equiv.Perm.permGroup
Subgroup.instSetLike
Equiv.Perm.OnCycleFactors.range_toPermHom'
ofPermHomFun
β€”mem_fixedPoints_or_exists_zpow_eq
ofPermHomFun_apply_of_mem_fixedPoints
Equiv.Perm.notMem_support
Function.mem_fixedPoints_iff
Equiv.Perm.mem_cycleFactorsFinset_support_le
Subtype.prop
ofPermHomFun_apply_of_cycleOf_mem
Equiv.Perm.zpow_apply_mem_support_of_mem_cycleFactorsFinset_iff
Equiv.Perm.cycleFactorsFinset_pairwise_disjoint
Subtype.coe_ne_coe
EquivLike.toEmbeddingLike
Finset.disjoint_right
Equiv.Perm.disjoint_iff_disjoint_support
mem_support_self
ofPermHomFun_apply_of_cycleOf_mem πŸ“–mathematicalFinset
Finset.instMembership
Equiv.Perm.support
Equiv.Perm
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
DivInvMonoid.toZPow
Group.toDivInvMonoid
Equiv.Perm.permGroup
Equiv.Perm.Basis
Equiv.Perm.instFunLikeBasisSubtypeMemFinsetCycleFactorsFinset
ofPermHomFun
Subgroup
Subgroup.instSetLike
Equiv.Perm.OnCycleFactors.range_toPermHom'
β€”Equiv.Perm.cycle_is_cycleOf
Subtype.prop
Equiv.Perm.SameCycle.exists_nat_pow_eq
Finite.of_fintype
sameCycle
Nat.find_spec
zpow_natCast
Equiv.Perm.IsCycleOn.zpow_apply_eq_zpow_apply
Equiv.Perm.isCycleOn_support_of_mem_cycleFactorsFinset
mem_support_self
ofPermHomFun_apply_of_mem_fixedPoints πŸ“–mathematicalSet
Set.instMembership
Function.fixedPoints
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
ofPermHomFunβ€”ofPermHomFun.eq_1
Equiv.Perm.cycleOf_mem_cycleFactorsFinset_iff
Equiv.Perm.notMem_support
ofPermHomFun_commute_zpow_apply πŸ“–mathematicalβ€”ofPermHomFun
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
DivInvMonoid.toZPow
Group.toDivInvMonoid
Equiv.Perm.permGroup
β€”mem_fixedPoints_or_exists_zpow_eq
ofPermHomFun_apply_of_mem_fixedPoints
Function.mem_fixedPoints_iff
add_comm
Equiv.Perm.mul_apply
zpow_add_one
zpow_add
ofPermHomFun_apply_of_cycleOf_mem
Equiv.Perm.zpow_apply_mem_support_of_mem_cycleFactorsFinset_iff
ofPermHomFun_mul πŸ“–mathematicalβ€”ofPermHomFun
Equiv.Perm
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Equiv.Perm.permGroup
Subgroup.instSetLike
Equiv.Perm.OnCycleFactors.range_toPermHom'
Subgroup.mul
β€”mem_fixedPoints_or_exists_zpow_eq
ofPermHomFun_apply_of_mem_fixedPoints
ofPermHomFun_apply_of_cycleOf_mem
Equiv.Perm.zpow_apply_mem_support_of_mem_cycleFactorsFinset_iff
mem_support_self
ofPermHomFun_one πŸ“–mathematicalβ€”ofPermHomFun
Equiv.Perm
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Equiv.Perm.permGroup
Subgroup.instSetLike
Equiv.Perm.OnCycleFactors.range_toPermHom'
Subgroup.one
β€”mem_fixedPoints_or_exists_zpow_eq
ofPermHomFun_apply_of_mem_fixedPoints
ofPermHomFun_apply_of_cycleOf_mem
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
OneMemClass.coe_one
Equiv.Perm.coe_one
ofPermHom_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Equiv.Perm.permGroup
Subgroup.instSetLike
Equiv.Perm.OnCycleFactors.range_toPermHom'
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MonoidHom.instFunLike
ofPermHom
ofPermHomFun
β€”β€”
ofPermHom_mem_centralizer πŸ“–mathematicalβ€”Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.centralizer
Set
Set.instSingletonSet
DFunLike.coe
MonoidHom
Finset
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Equiv.Perm.OnCycleFactors.range_toPermHom'
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MonoidHom.instFunLike
ofPermHom
β€”Subgroup.mem_centralizer_singleton_iff
Equiv.Perm.ext
ofPermHomFun_commute_zpow_apply
ofPermHom_support πŸ“–mathematicalβ€”Equiv.Perm.support
DFunLike.coe
MonoidHom
Equiv.Perm
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Equiv.Perm.permGroup
Subgroup.instSetLike
Equiv.Perm.OnCycleFactors.range_toPermHom'
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MonoidHom.instFunLike
ofPermHom
Finset.biUnion
Fintype.decidableEqEquivFintype
Finset.Subtype.fintype
β€”Finset.ext
mem_fixedPoints_or_exists_zpow_eq
ofPermHomFun_apply_of_mem_fixedPoints
Equiv.Perm.mem_support
Equiv.Perm.mem_cycleFactorsFinset_support_le
Subtype.prop
Function.mem_fixedPoints_iff
ofPermHomFun_apply_of_cycleOf_mem
Equiv.injective
injective
not_iff_comm
Mathlib.Tactic.Push.not_and_eq
Equiv.Perm.notMem_support
Equiv.Perm.cycleFactorsFinset_pairwise_disjoint
Finset.disjoint_left
Equiv.Perm.disjoint_iff_disjoint_support
sameCycle πŸ“–mathematicalEquiv.Perm
Finset
Finset.instMembership
Equiv.Perm.cycleFactorsFinset
Equiv.Perm.cycleOf
Equiv.Perm.instDecidableRelSameCycle
Equiv.Perm.SameCycle
DFunLike.coe
Equiv.Perm.Basis
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.instFunLikeBasisSubtypeMemFinsetCycleFactorsFinset
β€”Equiv.Perm.SameCycle.symm
Equiv.Perm.mem_support_cycleOf_iff
mem_support_self
toCentralizer_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.centralizer
Set
Set.instSingletonSet
MonoidHom
Finset
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Equiv.Perm.OnCycleFactors.range_toPermHom'
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MonoidHom.instFunLike
toCentralizer
ofPermHomFun
β€”β€”
toCentralizer_equivariant πŸ“–mathematicalβ€”Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.centralizer
Set
Set.instSingletonSet
Finset
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Equiv.Perm.OnCycleFactors.instMulActionSubtypeMemSubgroupCentralizerSingletonSetFinsetCycleFactorsFinset
DFunLike.coe
MonoidHom
Equiv.Perm.OnCycleFactors.range_toPermHom'
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
toCentralizer
EquivLike.toFunLike
Equiv.instEquivLike
β€”Equiv.Perm.ext
Equiv.Perm.mem_cycleFactorsFinset_iff
Subtype.prop
ofPermHomFun_commute_zpow_apply
zpow_one
ofPermHomFun_apply_mem_support_cycle_iff
Equiv.Perm.notMem_support
toPermHom_apply_toCentralizer πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.centralizer
Set
Set.instSingletonSet
Finset
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MonoidHom.instFunLike
Equiv.Perm.OnCycleFactors.toPermHom
Equiv.Perm.OnCycleFactors.range_toPermHom'
toCentralizer
β€”Equiv.Perm.ext
Equiv.Perm.OnCycleFactors.toPermHom_apply
toCentralizer_equivariant

Equiv.Perm.OnCycleFactors

Definitions

NameCategoryTheorems
instMulActionSubtypeMemSubgroupCentralizerSingletonSetFinsetCycleFactorsFinset πŸ“–CompOp
4 mathmath: Equiv.Perm.Basis.toCentralizer_equivariant, val_centralizer_smul, toPermHom_apply, centralizer_smul_def
kerParam πŸ“–CompOp
8 mathmath: kerParam_range_card, kerParam_injective, cycleType_kerParam_apply_apply, kerParam_range_eq_centralizer_of_count_le_one, kerParam_range_le_centralizer, kerParam_range_eq, kerParam_apply, sign_kerParam_apply_apply
range_toPermHom' πŸ“–CompOp
13 mathmath: Equiv.Perm.Basis.toCentralizer_equivariant, Equiv.Perm.Basis.toCentralizer_apply, Equiv.Perm.Basis.card_ofPermHom_support, Equiv.Perm.Basis.ofPermHom_apply, mem_range_toPermHom'_iff, Equiv.Perm.Basis.ofPermHom_mem_centralizer, Equiv.Perm.Basis.toPermHom_apply_toCentralizer, Equiv.Perm.Basis.ofPermHom_support, Equiv.Perm.Basis.ofPermHomFun_apply_mem_support_cycle_iff, Equiv.Perm.Basis.ofPermHomFun_apply_of_cycleOf_mem, Equiv.Perm.Basis.ofPermHomFun_mul, Equiv.Perm.Basis.ofPermHomFun_one, range_toPermHom_eq_range_toPermHom'
toPermHom πŸ“–CompOp
9 mathmath: mem_range_toPermHom_iff', nat_card_range_toPermHom, Equiv.Perm.Basis.toPermHom_apply_toCentralizer, mem_ker_toPermHom_iff, coe_toPermHom, mem_range_toPermHom_iff, toPermHom_apply, kerParam_range_eq, range_toPermHom_eq_range_toPermHom'

Theorems

NameKindAssumesProvesValidatesDepends On
centralizer_smul_def πŸ“–mathematicalβ€”Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.centralizer
Set
Set.instSingletonSet
Finset
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
instMulActionSubtypeMemSubgroupCentralizerSingletonSetFinsetCycleFactorsFinset
Equiv.Perm.instMul
Subgroup.inv
Subgroup.Centralizer.toConjAct_smul_mem_cycleFactorsFinset
Subtype.prop
β€”β€”
coe_toPermHom πŸ“–mathematicalβ€”Equiv.Perm
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
Subgroup
Equiv.Perm.permGroup
Subgroup.instSetLike
Subgroup.centralizer
Set
Set.instSingletonSet
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MonoidHom.instFunLike
toPermHom
Equiv.Perm.instMul
Equiv.Perm.instInv
β€”β€”
cycleType_kerParam_apply_apply πŸ“–mathematicalβ€”Equiv.Perm.cycleType
DFunLike.coe
MonoidHom
Equiv.Perm
Set.Elem
Function.fixedPoints
EquivLike.toFunLike
Equiv.instEquivLike
MulOneClass.toMulOne
Prod.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
Pi.mulOneClass
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Subgroup.instSetLike
Subgroup.zpowers
Subgroup.toGroup
MonoidHom.instFunLike
kerParam
Multiset
Multiset.instAdd
Subtype.fintype
Set
Set.instMembership
Function.fixedPoints.decidable
Finset.sum
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
Finset.univ
Finset.Subtype.fintype
β€”Subtype.prop
Equiv.Perm.Disjoint.zpow_disjoint_zpow
Equiv.Perm.cycleFactorsFinset_pairwise_disjoint
Subtype.coe_ne_coe
Equiv.Perm.pairwise_commute_of_mem_zpowers
Equiv.Perm.commute_ofSubtype_noncommPiCoprod
kerParam.eq_1
MonoidHom.noncommCoprod_apply
Prod.fst_mul_snd
mul_one
one_mul
Finset.univ_eq_attach
Equiv.Perm.Disjoint.cycleType_mul
Equiv.Perm.disjoint_ofSubtype_noncommPiCoprod
Subgroup.noncommPiCoprod_apply
Set.Pairwise.imp
Equiv.Perm.Disjoint.commute
Equiv.Perm.Disjoint.cycleType_noncommProd
Equiv.Perm.cycleType_ofSubtype
kerParam_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
Set.Elem
Function.fixedPoints
MulOneClass.toMulOne
Prod.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
Pi.mulOneClass
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Subgroup.instSetLike
Subgroup.zpowers
Subgroup.toGroup
MonoidHom.instFunLike
kerParam
Finset.instMembership
Equiv.Perm.cycleOf
Equiv.Perm.instDecidableRelSameCycle
Finset.decidableMem
Fintype.decidableEqEquivFintype
Set
Set.instMembership
Equiv.Perm.ofSubtype
Function.fixedPoints.decidable
β€”Equiv.Perm.pairwise_commute_of_mem_zpowers
Equiv.Perm.commute_ofSubtype_noncommPiCoprod
kerParam.eq_1
MonoidHom.noncommCoprod_apply'
Equiv.Perm.mul_apply
Equiv.Perm.ofSubtype_apply_of_not_mem
Function.mem_fixedPoints_iff
Equiv.Perm.mem_support
Equiv.Perm.cycleOf_mem_cycleFactorsFinset_iff
Subtype.prop
Subgroup.noncommPiCoprod_apply
Finset.noncommProd_erase_mul
Finset.mem_univ
Finset.mem_of_mem_erase
Equiv.Perm.notMem_support
Mathlib.Tactic.Contrapose.contraposeβ‚„
Equiv.Perm.mem_support_of_mem_noncommProd_support
Equiv.Perm.cycleFactorsFinset_pairwise_disjoint
Subgroup.mem_zpowers_iff
Finset.disjoint_left
Equiv.Perm.disjoint_iff_disjoint_support
Equiv.Perm.support_zpow_le
Equiv.Perm.cycleOf_apply_self
Equiv.Perm.zpow_apply_mem_support
MonoidHom.noncommCoprod_apply
Equiv.apply_eq_iff_eq
Equiv.Perm.support_zpowers_of_mem_cycleFactorsFinset_le
kerParam_injective πŸ“–mathematicalβ€”Equiv.Perm
Set.Elem
Function.fixedPoints
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
MulOneClass.toMulOne
Prod.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
Pi.mulOneClass
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Subgroup.instSetLike
Subgroup.zpowers
Subgroup.toGroup
MonoidHom.instFunLike
kerParam
β€”Equiv.Perm.pairwise_commute_of_mem_zpowers
Equiv.Perm.commute_ofSubtype_noncommPiCoprod
kerParam.eq_1
MonoidHom.noncommCoprod_injective
Equiv.Perm.ofSubtype_injective
MonoidHom.injective_noncommPiCoprod_of_iSupIndep
Subgroup.commute_subtype_of_commute
Subgroup.range_subtype
iSup_congr_Prop
Subgroup.zpowers_eq_closure
Equiv.Perm.disjoint_closure_of_disjoint_support
Equiv.Perm.disjoint_iff_disjoint_support
Equiv.Perm.cycleFactorsFinset_pairwise_disjoint
Subgroup.subtype_injective
Subgroup.noncommPiCoprod_range
Subgroup.closure_eq
Disjoint.mono_right
Equiv.Perm.mem_cycleFactorsFinset_support_le
Equiv.Perm.ofSubtype_support_disjoint
kerParam_range_card πŸ“–mathematicalβ€”Fintype.card
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
MonoidHom.range
Set.Elem
Function.fixedPoints
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
Prod.instGroup
Pi.group
Finset
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup.zpowers
Subgroup.toGroup
kerParam
MonoidHom.fintypeRange
instFintypeProd
Equiv.instFintype
Set
Set.instMembership
Subtype.fintype
Function.fixedPoints.decidable
Pi.instFintype
Fintype.decidableEqEquivFintype
Finset.Subtype.fintype
Subgroup.instFintypeSubtypeMemOfDecidablePred
Subgroup.decidableMemZPowers
Nat.factorial
Multiset.sum
Nat.instAddCommMonoid
Equiv.Perm.cycleType
Multiset.prod
Nat.instCommMonoid
β€”Fintype.card_coeSort_range
kerParam_injective
Fintype.card_prod
Fintype.card_perm
Fintype.card_pi
Equiv.Perm.card_fixedPoints
Finset.univ_eq_attach
Finset.prod_attach
Equiv.Perm.cycleType.eq_1
Finset.prod_map_val
Finset.prod_congr
Fintype.card_zpowers
Equiv.Perm.IsCycle.orderOf
Equiv.Perm.mem_cycleFactorsFinset_iff
kerParam_range_eq πŸ“–mathematicalβ€”MonoidHom.range
Equiv.Perm
Set.Elem
Function.fixedPoints
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
Prod.instGroup
Equiv.Perm.permGroup
Pi.group
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Subgroup.instSetLike
Subgroup.zpowers
Subgroup.toGroup
kerParam
Subgroup.map
Subgroup.centralizer
Set
Set.instSingletonSet
Subgroup.subtype
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toPermHom
β€”le_antisymm
Equiv.Perm.pairwise_commute_of_mem_zpowers
Equiv.Perm.commute_ofSubtype_noncommPiCoprod
kerParam.eq_1
MonoidHom.noncommCoprod_range
sup_le_iff
Subgroup.noncommPiCoprod_range
iSup_le_iff
Subgroup.mem_centralizer_singleton_iff
Equiv.Perm.Disjoint.commute
Equiv.Perm.disjoint_iff_disjoint_support
Equiv.Perm.ofSubtype_support_disjoint
Equiv.Perm.ext
Commute.mul_inv_cancel
Disjoint.mono_right
Equiv.Perm.mem_cycleFactorsFinset_support_le
Equiv.Perm.self_mem_cycle_factors_commute
Equiv.Perm.cycleFactorsFinset_mem_commute'
Equiv.Perm.apply_mem_fixedPoints_iff_mem_of_mem_centralizer
Subtype.prop
kerParam_apply
Equiv.Perm.mem_support
Equiv.Perm.cycleOf_apply_self
Equiv.Perm.cycleOf_mem_cycleFactorsFinset_iff
Equiv.Perm.ofSubtype_apply_of_mem
Equiv.Perm.subtypePerm_apply
Equiv.Perm.notMem_support
kerParam_range_le_centralizer πŸ“–mathematicalβ€”Subgroup
Equiv.Perm
Equiv.Perm.permGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MonoidHom.range
Set.Elem
Function.fixedPoints
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
Prod.instGroup
Pi.group
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup.instSetLike
Subgroup.zpowers
Subgroup.toGroup
kerParam
Subgroup.centralizer
Set
Set.instSingletonSet
β€”kerParam_range_eq
Subgroup.map_subtype_le
mem_ker_toPermHom_iff πŸ“–mathematicalβ€”Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.centralizer
Set
Set.instSingletonSet
Subgroup.toGroup
MonoidHom.ker
Finset
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toPermHom
Commute
Equiv.Perm.instMul
β€”β€”
mem_range_toPermHom'_iff πŸ“–mathematicalβ€”Equiv.Perm
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Equiv.Perm.permGroup
Subgroup.instSetLike
range_toPermHom'
Finset.card
Equiv.Perm.support
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
β€”β€”
mem_range_toPermHom_iff πŸ“–mathematicalβ€”Equiv.Perm
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Equiv.Perm.permGroup
Subgroup.instSetLike
MonoidHom.range
Subgroup.centralizer
Set
Set.instSingletonSet
Subgroup.toGroup
toPermHom
Finset.card
Equiv.Perm.support
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
β€”coe_toPermHom
Equiv.Perm.support_conj
Finset.card_map
Equiv.Perm.Basis.nonempty
Equiv.Perm.Basis.toPermHom_apply_toCentralizer
mem_range_toPermHom_iff' πŸ“–mathematicalβ€”Equiv.Perm
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Equiv.Perm.permGroup
Subgroup.instSetLike
MonoidHom.range
Subgroup.centralizer
Set
Set.instSingletonSet
Subgroup.toGroup
toPermHom
Finset.card
Equiv.Perm.support
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
β€”mem_range_toPermHom_iff
nat_card_range_toPermHom πŸ“–mathematicalβ€”Nat.card
Equiv.Perm
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Equiv.Perm.permGroup
Subgroup.instSetLike
MonoidHom.range
Subgroup.centralizer
Set
Set.instSingletonSet
Subgroup.toGroup
toPermHom
Finset.prod
Nat.instCommMonoid
Multiset.toFinset
Equiv.Perm.cycleType
Nat.factorial
Multiset.count
β€”Fintype.card_eq_nat_card
mem_range_toPermHom_iff'
Set.mem_setOf_eq
Nat.card_eq_fintype_card
Fintype.card_congr'
DomMulAct.stabilizer_card'
Finset.prod_congr
Finset.ext
Multiset.map_congr
range_toPermHom_eq_range_toPermHom' πŸ“–mathematicalβ€”MonoidHom.range
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.centralizer
Set
Set.instSingletonSet
Subgroup.toGroup
Finset
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
toPermHom
range_toPermHom'
β€”Subgroup.ext
mem_range_toPermHom_iff
mem_range_toPermHom'_iff
sign_kerParam_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
Units.instMulOneClass
MonoidHom.instFunLike
Equiv.Perm.sign
Set.Elem
Function.fixedPoints
EquivLike.toFunLike
Equiv.instEquivLike
Prod.instMulOneClass
Pi.mulOneClass
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Subgroup.instSetLike
Subgroup.zpowers
Subgroup.toGroup
kerParam
Units.instMul
Set
Set.instMembership
Subtype.fintype
Function.fixedPoints.decidable
Finset.prod
CommGroup.toCommMonoid
Units.instCommGroupUnits
Int.instCommMonoid
Finset.univ
Finset.Subtype.fintype
β€”Equiv.Perm.pairwise_commute_of_mem_zpowers
Equiv.Perm.commute_ofSubtype_noncommPiCoprod
kerParam.eq_1
MonoidHom.noncommCoprod_apply
Prod.fst_mul_snd
mul_one
one_mul
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
Equiv.Perm.sign_ofSubtype
Finset.univ_eq_attach
LeftCancelSemigroup.toIsLeftCancelMul
MonoidHom.comp_apply
Subgroup.commute_subtype_of_commute
Subgroup.noncommPiCoprod.eq_1
Pairwise.mono
MonoidHom.comp_noncommPiCoprod
Pairwise.set_pairwise
MonoidHom.noncommPiCoprod_apply
Commute.all
Finset.noncommProd_eq_prod
Finset.prod_congr
toPermHom_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
Subgroup
Equiv.Perm.permGroup
Subgroup.instSetLike
Subgroup.centralizer
Set
Set.instSingletonSet
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MonoidHom.instFunLike
toPermHom
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
instMulActionSubtypeMemSubgroupCentralizerSingletonSetFinsetCycleFactorsFinset
β€”β€”
val_centralizer_smul πŸ“–mathematicalβ€”Equiv.Perm
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Equiv.Perm.permGroup
Subgroup.instSetLike
Subgroup.centralizer
Set
Set.instSingletonSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
instMulActionSubtypeMemSubgroupCentralizerSingletonSetFinsetCycleFactorsFinset
Equiv.Perm.instMul
Subgroup.inv
β€”β€”

Equiv.Perm.OnCycleFactors.Subgroup.Centralizer

Definitions

NameCategoryTheorems
cycleFactorsFinset_mulAction πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
toConjAct_smul_mem_cycleFactorsFinset πŸ“–mathematicalEquiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.centralizer
Set
Set.instSingletonSet
Finset
Finset.instMembership
Equiv.Perm.cycleFactorsFinset
ConjAct
ConjAct.instSMul
Group.toDivInvMonoid
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
ConjAct.instDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
ConjAct.toConjAct
β€”Equiv.Perm.cycleFactorsFinset_conj_eq
mul_inv_cancel
mul_one
mul_assoc
Subgroup.mem_centralizer_singleton_iff
ConjAct.toConjAct_smul
Finset.coe_smul_finset
Finset.mem_coe

---

← Back to Index