📁 Source: Mathlib/GroupTheory/Perm/Closure.lean
closure_cycle_adjacent_swap
closure_cycle_coprime_swap
closure_isCycle
closure_prime_cycle_swap
IsCycle
support
Finset.univ
Subgroup.closure
Equiv.Perm
permGroup
Set
Set.instInsert
Set.instSingletonSet
Equiv.swap
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
Top.top
Subgroup
Subgroup.instTop
Subgroup.subset_closure
Set.mem_insert
Set.mem_insert_of_mem
Set.mem_singleton
Equiv.mul_swap_eq_swap_mul
mul_inv_cancel_right
pow_succ'
Subgroup.mul_mem
Subgroup.inv_mem
pow_zero
Equiv.swap_self
Subgroup.one_mem
mul_apply
Equiv.swap_comm
Equiv.swap_mul_swap_mul_swap
Finset.mem_univ
IsCycle.exists_pow_eq
Finite.of_fintype
mem_support
eq_top_iff
closure_isSwap
Subgroup.closure_le
Fintype.card
instPowNat
exists_pow_eq_self_of_coprime
IsCycle.orderOf
Finset.card_univ
support_pow_coprime
IsCycle.of_pow
le_trans
support_pow_le
ge_of_eq
Set.insert_subset_iff
Subgroup.pow_mem
Set.singleton_subset_iff
setOf
nonempty_fintype
top_le_iff
Subgroup.closure_mono
IsSwap.isCycle
Nat.Prime
IsSwap
Finset.ext_iff
Nat.Prime.coprime_iff_not_dvd
one_apply
one_pow
pow_orderOf_eq_one
pow_mul
---
← Back to Index