Documentation Verification Report

ConjAct

📁 Source: Mathlib/GroupTheory/Perm/ConjAct.lean

Statistics

MetricCount
DefinitionsConjAct
1
TheoremscycleFactorsFinset_conj, cycleFactorsFinset_conj_eq, mem_conj_support, mem_cycleFactorsFinset_conj'
4
Total5

Equiv.Perm

Theorems

NameKindAssumesProvesValidatesDepends On
cycleFactorsFinset_conj 📖mathematicalcycleFactorsFinset
ConjAct
Equiv.Perm
ConjAct.instSMul
Group.toDivInvMonoid
permGroup
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
ConjAct.instDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
ConjAct.toConjAct
Finset.map
Equiv.toEmbedding
MulEquiv.toEquiv
MonoidHom
MulAut
MulAut.instGroup
MonoidHom.instFunLike
MulAut.conj
Finset.ext
ConjAct.smul_def
ConjAct.ofConjAct_toConjAct
Finset.mem_map_equiv
mem_cycleFactorsFinset_conj
mul_assoc
mul_inv_cancel_left
mul_inv_cancel
mul_one
cycleFactorsFinset_conj_eq 📖mathematicalcycleFactorsFinset
ConjAct
Equiv.Perm
ConjAct.instSMul
Group.toDivInvMonoid
permGroup
Finset
Finset.smulFinset
Fintype.decidableEqEquivFintype
Finset.ext
mem_cycleFactorsFinset_conj'
inv_smul_smul
Finset.inv_smul_mem_iff
mem_conj_support 📖mathematicalFinset
Finset.instMembership
support
ConjAct
Equiv.Perm
ConjAct.instSMul
Group.toDivInvMonoid
permGroup
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
ConjAct.instDivInvMonoid
MulEquiv.instEquivLike
ConjAct.ofConjAct
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
ConjAct.instGroup
Equiv.apply_eq_iff_eq_symm_apply
mem_cycleFactorsFinset_conj' 📖mathematicalEquiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
ConjAct
ConjAct.instSMul
Group.toDivInvMonoid
permGroup
mem_cycleFactorsFinset_conj

(root)

Definitions

NameCategoryTheorems
ConjAct 📖CompOp
72 mathmath: ConjAct.smul_def, ConjAct.fixedPoints_eq_center, ConjAct.toConjAct_inv, ConjAct.toConjAct_mul, ConjAct.stabilizer_eq_centralizer, CongruenceSubgroup.exists_Gamma_le_conj', CongruenceSubgroup.conjGL_coe, ConjAct.unitsSMulCommClass', ConjAct.unitsSMulCommClass, ConjAct.forall, val_unitsCentralizerEquiv_apply_coe, IsCusp.of_isFiniteRelIndex_conj, ConjAct.toConjAct_zero, ConjAct.smulCommClass₀, SlashInvariantForm.coe_translate, Subgroup.Normal.conjAct, Subgroup.Commensurable.commensurable_conj, Subgroup.conjAct_pointwise_smul_iff, lipschitzGroup.conjAct_smul_ι_mem_range_ι, spinGroup.units_involute_act_eq_conjAct, Subgroup.Commensurable.commensurator_mem_iff, ConjAct.smulCommClass₀', spinGroup.conjAct_smul_ι_mem_range_ι, ConjAct.smulCommClass', spinGroup.conjAct_smul_range_ι, ConjAct.ofConjAct_zero, CongruenceSubgroup.IsArithmetic.conj, CongruenceSubgroup.Gamma_cong_eq_self, ConjAct.units_smul_def, Subgroup.normalCore_eq_iInf_conjAct, CongruenceSubgroup.isArithmetic_conj_SL2Z, ConjAct.card, ConjAct.of_mul_symm_eq, pinGroup.conjAct_smul_ι_mem_range_ι, CuspForm.coe_translate, Unitary.toAlgEquiv_conjStarAlgAut, ConjAct.smulCommClass, ConjAct.toConjAct_smul, pinGroup.conjAct_smul_range_ι, val_unitsCentralizerEquiv_symm_apply_coe, Subgroup.Commensurable.commensurable_inv, Equiv.Perm.mem_cycleFactorsFinset_conj', Unitary.toRingEquiv_conjStarAlgAut, Subgroup.Commensurable.conj, ConjAct.units_continuousConstSMul, ConjAct.ofConjAct_toConjAct, Equiv.Perm.OnCycleFactors.Subgroup.Centralizer.toConjAct_smul_mem_cycleFactorsFinset, ConjAct.Subgroup.val_conj_smul, Equiv.Perm.cycleFactorsFinset_conj_eq, Subgroup.conjAct_pointwise_smul_eq_self, ConjAct.mem_orbit_conjAct, Subgroup.Commensurable.commensurator'_mem_iff, Equiv.Perm.cycleFactorsFinset_conj, ConjAct.orbit_eq_carrier_conjClasses, CongruenceSubgroup.conj_cong_is_cong, Module.End.mulSemiringActionToAlgEquiv_conjAct_surjective, ConjAct.ofConjAct_mul, ConjAct.orbitRel_conjAct, ConjAct.ofConjAct_inv, ConjAct.to_mul_symm_eq, ModularForm.coe_translate, Equiv.Perm.mem_conj_support, ConjClasses.card_carrier, ConjAct.toConjAct_ofConjAct, ConjAct.toConjAct_one, Subgroup.nat_card_centralizer_nat_card_stabilizer, ConjAct.ofConjAct_one, Subgroup.IsArithmetic.conj, lipschitzGroup.conjAct_smul_range_ι, IsCusp.smul, ConjAct.smul_eq_mulAut_conj, Subgroup.centralizer_eq_comap_stabilizer

---

← Back to Index