Concrete
π Source: Mathlib/GroupTheory/Perm/Cycle/Concrete.lean
Statistics
Cycle
Definitions
Theorems
Equiv.Perm
Definitions
| Name | Category | Theorems |
|---|---|---|
instRepr π | CompOp | β |
isoCycle π | CompOp | β |
isoCycle' π | CompOp | β |
toCycle π | CompOp | |
toList π | CompOp | 18 mathmath:toList_formPerm_singleton, mem_toList_iff, length_toList_pos_of_mem_support, toList_eq_nil_iff, toList_formPerm_isRotated_self, formPerm_toList, SameCycle.toList_isRotated, toList_pow_apply_eq_rotate, toList_formPerm_nontrivial, toCycle_eq_toList, toList_formPerm_nil, toList_one, pow_apply_mem_toList_iff_mem_support, length_toList, two_le_length_toList_iff_mem_support, toList_getElem_zero, exists_toCycle_toList, nodup_toList |
Β«termC[_,]Β» π | CompOp | β |
Theorems
Equiv.Perm.IsCycle
Theorems
Equiv.Perm.SameCycle
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
toList_isRotated π | mathematical | Equiv.Perm.SameCycle | List.IsRotatedEquiv.Perm.toList | β | exists_pow_eq_of_mem_supportpow_zeroEquiv.Perm.toList_pow_apply_eq_rotateEquiv.Perm.toList_eq_nil_iffList.isRotated_nil_iff'mem_support_iff |
List
Theorems
---