Documentation Verification Report

Concrete

πŸ“ Source: Mathlib/GroupTheory/Perm/Cycle/Concrete.lean

Statistics

MetricCount
DefinitionsformPerm, instRepr, isoCycle, isoCycle', toCycle, toList, Β«termC[_,]Β»
7
TheoremsformPerm_apply_mem_eq_next, formPerm_coe, formPerm_eq_formPerm_iff, formPerm_eq_self_of_notMem, formPerm_reverse, formPerm_subsingleton, isCycle_formPerm, support_formPerm, existsUnique_cycle, existsUnique_cycle_nontrivial_subtype, existsUnique_cycle_subtype, toList_isRotated, exists_toCycle_toList, formPerm_toList, getElem_toList, length_toList, length_toList_pos_of_mem_support, mem_toCycle_iff_support, mem_toList_iff, next_toList_eq_apply, nodup_toCycle, nodup_toList, nontrivial_toCycle, pow_apply_mem_toList_iff_mem_support, toCycle_eq_toList, toCycle_next, toList_eq_nil_iff, toList_formPerm_isRotated_self, toList_formPerm_nil, toList_formPerm_nontrivial, toList_formPerm_singleton, toList_getElem_zero, toList_ne_singleton, toList_one, toList_pow_apply_eq_rotate, two_le_length_toList_iff_mem_support, cycleOf_formPerm, cycleType_formPerm, formPerm_apply_mem_eq_next, formPerm_disjoint_iff, isCycle_formPerm, pairwise_sameCycle_formPerm
42
Total49

Cycle

Definitions

NameCategoryTheorems
formPerm πŸ“–CompOp
12 mathmath: formPerm_subsingleton, formPerm_coe, support_formPerm, CartanMatrix.D_three', Equiv.Perm.IsCycle.existsUnique_cycle_nontrivial_subtype, Equiv.Perm.IsCycle.existsUnique_cycle_subtype, formPerm_eq_formPerm_iff, isCycle_formPerm, formPerm_apply_mem_eq_next, formPerm_reverse, Equiv.Perm.IsCycle.existsUnique_cycle, formPerm_eq_self_of_notMem

Theorems

NameKindAssumesProvesValidatesDepends On
formPerm_apply_mem_eq_next πŸ“–mathematicalNodup
Cycle
instMembership
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
formPerm
next
β€”List.formPerm_apply_mem_eq_next
formPerm_coe πŸ“–mathematicalβ€”formPerm
ofList
List.formPerm
β€”β€”
formPerm_eq_formPerm_iff πŸ“–mathematicalNodupformPerm
Subsingleton
β€”length_subsingleton_iff
Quotient.inductionOnβ‚‚'
List.formPerm_eq_formPerm_iff
formPerm_eq_self_of_notMem πŸ“–mathematicalNodup
Cycle
instMembership
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
formPerm
β€”List.formPerm_apply_of_notMem
formPerm_reverse πŸ“–mathematicalNodupformPerm
reverse
nodup_reverse_iff
Equiv.Perm
Equiv.Perm.instInv
β€”nodup_reverse_iff
List.formPerm_reverse
formPerm_subsingleton πŸ“–mathematicalSubsingletonformPerm
Subsingleton.nodup
Equiv.Perm
Equiv.Perm.instOne
β€”Subsingleton.nodup
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
isCycle_formPerm πŸ“–mathematicalNodup
Nontrivial
Equiv.Perm.IsCycle
formPerm
β€”List.isCycle_formPerm
length_nontrivial
support_formPerm πŸ“–mathematicalNodup
Nontrivial
Equiv.Perm.support
formPerm
toFinset
β€”List.support_formPerm_of_nodup
zero_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
length_nontrivial

Equiv.Perm

Definitions

NameCategoryTheorems
instRepr πŸ“–CompOpβ€”
isoCycle πŸ“–CompOpβ€”
isoCycle' πŸ“–CompOpβ€”
toCycle πŸ“–CompOp
5 mathmath: mem_toCycle_iff_support, toCycle_eq_toList, nodup_toCycle, nontrivial_toCycle, exists_toCycle_toList
toList πŸ“–CompOp
18 mathmath: toList_formPerm_singleton, mem_toList_iff, length_toList_pos_of_mem_support, toList_eq_nil_iff, toList_formPerm_isRotated_self, formPerm_toList, SameCycle.toList_isRotated, toList_pow_apply_eq_rotate, toList_formPerm_nontrivial, toCycle_eq_toList, toList_formPerm_nil, toList_one, pow_apply_mem_toList_iff_mem_support, length_toList, two_le_length_toList_iff_mem_support, toList_getElem_zero, exists_toCycle_toList, nodup_toList
Β«termC[_,]Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_toCycle_toList πŸ“–mathematicalIsCycletoCycle
Cycle.ofList
toList
β€”toCycle_eq_toList
formPerm_toList πŸ“–mathematicalβ€”List.formPerm
toList
cycleOf
instDecidableRelSameCycle
β€”cycleOf_eq_one_iff
toList_eq_nil_iff
notMem_support
List.formPerm_nil
ext
SameCycle.exists_pow_eq_of_mem_support
mem_support
cycleOf_apply_apply_pow_self
mem_toList_iff
List.formPerm_apply_mem_eq_next
nodup_toList
next_toList_eq_apply
pow_succ'
mul_apply
cycleOf_apply_of_not_sameCycle
List.formPerm_apply_of_notMem
getElem_toList πŸ“–mathematicaltoListDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instPowNat
β€”List.getElem_iterate
length_toList πŸ“–mathematicalβ€”toList
Finset.card
support
cycleOf
instDecidableRelSameCycle
β€”List.length_iterate
length_toList_pos_of_mem_support πŸ“–mathematicalFinset
Finset.instMembership
support
toListβ€”LT.lt.trans_le
Nat.instAtLeastTwoHAddOfNat
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
two_le_length_toList_iff_mem_support
mem_toCycle_iff_support πŸ“–mathematicalIsCycleCycle
Cycle.instMembership
toCycle
β€”exists_toCycle_toList
mem_toList_iff
isCycle_iff_sameCycle
mem_support
toCycle_eq_toList
pow_zero
mem_toList_iff πŸ“–mathematicalβ€”toList
SameCycle
Finset
Finset.instMembership
support
β€”Mathlib.Tactic.Contrapose.contrapose₁
support_cycleOf_eq_nil_iff
Nat.instCanonicallyOrderedAdd
SameCycle.exists_pow_eq_of_mem_support
next_toList_eq_apply πŸ“–mathematicaltoListList.next
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
β€”SameCycle.exists_pow_eq_of_mem_support
mem_toList_iff
length_toList
getElem_toList
List.next.congr_simp
LE.le.trans_lt
List.next_getElem
nodup_toList
mul_apply
pow_succ'
pow_mod_orderOf_cycleOf_apply
IsCycle.orderOf
isCycle_cycleOf
mem_support
nodup_toCycle πŸ“–mathematicalIsCycleCycle.Nodup
toCycle
β€”toCycle_eq_toList
nodup_toList
nodup_toList πŸ“–mathematicalβ€”toListβ€”toList_eq_nil_iff
notMem_support
isCycle_cycleOf
List.nodup_iff_injective_getElem
getElem_toList
cycleOf_pow_apply_self
pow_zero
mem_support
IsCycle.support_pow_of_pos_of_lt_orderOf
cycleOf_apply_self
IsCycle.orderOf
length_toList
pow_inj_mod
support_congr
IsCycle.support_pow_eq_iff
subset_refl
Finset.instReflSubset
IsCycle.exists_pow_eq
Finite.of_fintype
mul_apply
Commute.eq
Commute.pow_pow_self
nontrivial_toCycle πŸ“–mathematicalIsCycleCycle.Nontrivial
toCycle
β€”toCycle_eq_toList
Cycle.nontrivial_coe_nodup_iff
nodup_toList
length_toList
pow_apply_mem_toList_iff_mem_support πŸ“–mathematicalβ€”toList
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instPowNat
Finset
Finset.instMembership
support
β€”mem_toList_iff
SameCycle.symm
sameCycle_pow_left
SameCycle.refl
toCycle_eq_toList πŸ“–mathematicalIsCycletoCycle
Cycle.ofList
toList
β€”Multiset.cons_erase
toCycle.eq_1
Multiset.recOn_cons
toCycle_next πŸ“–mathematicalIsCycle
Cycle
Cycle.instMembership
toCycle
Cycle.next
nodup_toCycle
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
β€”nodup_toCycle
exists_toCycle_toList
Cycle.next.congr_simp
next_toList_eq_apply
toList_eq_nil_iff πŸ“–mathematicalβ€”toList
Finset
Finset.instMembership
support
β€”β€”
toList_formPerm_isRotated_self πŸ“–mathematicalβ€”List.IsRotated
toList
List.formPerm
β€”List.formPerm_eq_of_isRotated
LT.lt.trans_eq
LE.le.trans_lt
List.length_rotate
List.get_eq_get_rotate
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
le_of_lt
LT.lt.trans_le
Nat.instAtLeastTwoHAddOfNat
zero_lt_two
Nat.instZeroLEOneClass
toList_formPerm_nontrivial
toList_formPerm_nil πŸ“–mathematicalβ€”toList
List.formPerm
β€”toList_one
toList_formPerm_nontrivial πŸ“–mathematicalβ€”toList
List.formPerm
LT.lt.trans_le
PartialOrder.toPreorder
Nat.instPartialOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
Nat.instAddMonoidWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instAddCommMonoid
Nat.instIsOrderedAddMonoid
β€”List.isCycle_formPerm
List.support_formPerm_of_nodup
zero_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
LT.lt.trans_le
zero_lt_two
toList.eq_1
IsCycle.cycleOf_eq
mem_support
List.card_toFinset
List.dedup_eq_self
List.length_iterate
LE.le.trans_lt
List.getElem_iterate
List.formPerm_pow_apply_getElem
toList_formPerm_singleton πŸ“–mathematicalβ€”toList
List.formPerm
β€”toList_one
toList_getElem_zero πŸ“–mathematicalFinset
Finset.instMembership
support
toList
length_toList_pos_of_mem_support
β€”length_toList_pos_of_mem_support
List.getElem_iterate
toList_ne_singleton πŸ“–β€”β€”β€”β€”length_toList
zero_add
toList_one πŸ“–mathematicalβ€”toList
Equiv.Perm
instOne
β€”cycleOf_one
support_one
toList_pow_apply_eq_rotate πŸ“–mathematicalβ€”toList
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instPowNat
β€”length_toList
cycleOf_self_apply_pow
List.length_rotate
getElem_toList
LE.le.trans_lt
List.getElem_rotate
pow_mod_card_support_cycleOf_self_apply
pow_add
mul_apply
two_le_length_toList_iff_mem_support πŸ“–mathematicalβ€”toList
Finset
Finset.instMembership
support
β€”length_toList

Equiv.Perm.IsCycle

Theorems

NameKindAssumesProvesValidatesDepends On
existsUnique_cycle πŸ“–mathematicalEquiv.Perm.IsCycleExistsUnique
Cycle
Cycle.Nodup
Equiv.Perm
Cycle.formPerm
β€”nonempty_fintype
Equiv.Perm.nodup_toList
Equiv.Perm.formPerm_toList
cycleOf_eq
List.IsRotated.symm
Equiv.Perm.toList_formPerm_isRotated_self
Mathlib.Tactic.Contrapose.contraposeβ‚‚
List.formPerm_eq_one_iff
List.mem_toFinset
List.support_formPerm_le
existsUnique_cycle_nontrivial_subtype πŸ“–mathematicalEquiv.Perm.IsCycleExistsUnique
Cycle
Cycle.Nodup
Cycle.Nontrivial
Equiv.Perm
Cycle.formPerm
Subtype.prop
β€”Subtype.prop
existsUnique_cycle_subtype
Cycle.Nodup.nontrivial_iff
ne_one
Cycle.formPerm_subsingleton
existsUnique_cycle_subtype πŸ“–mathematicalEquiv.Perm.IsCycleExistsUnique
Cycle
Cycle.Nodup
Equiv.Perm
Cycle.formPerm
Subtype.prop
β€”Subtype.prop
existsUnique_cycle

Equiv.Perm.SameCycle

Theorems

NameKindAssumesProvesValidatesDepends On
toList_isRotated πŸ“–mathematicalEquiv.Perm.SameCycleList.IsRotated
Equiv.Perm.toList
β€”exists_pow_eq_of_mem_support
pow_zero
Equiv.Perm.toList_pow_apply_eq_rotate
Equiv.Perm.toList_eq_nil_iff
List.isRotated_nil_iff'
mem_support_iff

List

Theorems

NameKindAssumesProvesValidatesDepends On
cycleOf_formPerm πŸ“–mathematicalβ€”Equiv.Perm.cycleOf
formPerm
Equiv.Perm.instDecidableRelSameCycle
Subtype.fintype
β€”nodup_attach
Equiv.Perm.IsCycle.cycleOf_eq
isCycle_formPerm
formPerm_apply_mem_ne_self_iff
cycleType_formPerm πŸ“–mathematicalβ€”Equiv.Perm.cycleType
Subtype.fintype
formPerm
Multiset
Multiset.instSingleton
β€”Equiv.Perm.cycleType_eq
mul_one
isCycle_formPerm
nodup_attach
instIsEmptyFalse
support_formPerm_of_nodup
zero_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
card_toFinset
dedup_eq_self
formPerm_apply_mem_eq_next πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
formPerm
next
β€”LE.le.trans_lt
next_getElem
formPerm_apply_getElem
formPerm_disjoint_iff πŸ“–mathematicalβ€”Equiv.Perm.Disjoint
formPerm
β€”Equiv.Perm.disjoint_iff_eq_or_eq
formPerm_apply_mem_eq_self_iff
formPerm_apply_of_notMem
isCycle_formPerm πŸ“–mathematicalβ€”Equiv.Perm.IsCycle
formPerm
β€”Nat.instCanonicallyOrderedAdd
Mathlib.Meta.NormNum.isNat_eq_false
Nat.instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
zero_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
Nat.instAtLeastTwoHAddOfNat
formPerm_apply_mem_ne_self_iff
mem_of_formPerm_apply_ne
zpow_natCast
formPerm_pow_apply_head
pairwise_sameCycle_formPerm πŸ“–mathematicalβ€”Equiv.Perm.SameCycle
formPerm
β€”Equiv.Perm.IsCycle.sameCycle
isCycle_formPerm
formPerm_apply_mem_ne_self_iff

---

← Back to Index