Documentation Verification Report

Factors

πŸ“ Source: Mathlib/GroupTheory/Perm/Cycle/Factors.lean

Statistics

MetricCount
DefinitionscycleFactors, cycleFactorsAux, go, cycleFactorsFinset, cycleOf, instDecidableRelSameCycle, truncCycleFactors
7
TheoremscycleFactorsFinset_mul_eq_union, cycleOf_mul_distrib, disjoint_cycleFactorsFinset, cycleFactorsFinset_eq_singleton, cycleOf, cycleOf_eq, forall_commute_iff, cycleOf_apply, cycleOf_eq, exists_pow_eq, exists_pow_eq_of_mem_support, mem_support_iff, commute_iff_of_mem_cycleFactorsFinset, commute_ofSubtype_noncommPiCoprod, commute_of_mem_cycleFactorsFinset_commute, cycleFactorsFinset_eq_empty_iff, cycleFactorsFinset_eq_finset, cycleFactorsFinset_eq_list_toFinset, cycleFactorsFinset_eq_singleton_iff, cycleFactorsFinset_eq_singleton_self_iff, cycleFactorsFinset_injective, cycleFactorsFinset_mem_commute, cycleFactorsFinset_mem_commute', cycleFactorsFinset_mul_inv_mem_eq_sdiff, cycleFactorsFinset_noncommProd, cycleFactorsFinset_one, cycleFactorsFinset_pairwise_disjoint, cycleOf_apply, cycleOf_apply_apply_pow_self, cycleOf_apply_apply_self, cycleOf_apply_apply_zpow_self, cycleOf_apply_of_not_sameCycle, cycleOf_apply_self, cycleOf_eq_one_iff, cycleOf_inv, cycleOf_mem_cycleFactorsFinset_iff, cycleOf_mul_of_apply_right_eq_self, cycleOf_ne_one_iff_mem_cycleFactorsFinset, cycleOf_one, cycleOf_pow_apply_self, cycleOf_self_apply, cycleOf_self_apply_pow, cycleOf_self_apply_zpow, cycleOf_zpow_apply_self, cycle_induction_on, cycle_is_cycleOf, disjoint_mul_inv_of_mem_cycleFactorsFinset, disjoint_ofSubtype_noncommPiCoprod, eq_cycleOf_of_mem_cycleFactorsFinset_iff, isCycleOn_support_cycleOf, isCycleOn_support_of_mem_cycleFactorsFinset, isCycle_cycleOf, isCycle_cycleOf_iff, list_cycles_perm_list_cycles, mem_cycleFactorsFinset_conj, mem_cycleFactorsFinset_iff, mem_cycleFactorsFinset_support, mem_cycleFactorsFinset_support_le, mem_list_cycles_iff, mem_support_cycleOf_iff, mem_support_cycleOf_iff', mem_support_cycle_of_cycle, mem_support_iff_mem_support_of_mem_cycleFactorsFinset, pairwise_commute_of_mem_zpowers, pairwise_disjoint_of_mem_zpowers, pow_mod_card_support_cycleOf_self_apply, pow_mod_orderOf_cycleOf_apply, sameCycle_iff_cycleOf_eq_of_mem_support, self_mem_cycle_factors_commute, subtypePerm_on_cycleFactorsFinset, support_cycleOf_eq_nil_iff, support_cycleOf_le, support_cycleOf_nonempty, support_zpowers_of_mem_cycleFactorsFinset_le, two_le_card_support_cycleOf_iff, zpow_apply_mem_support_of_mem_cycleFactorsFinset_iff, zpow_eq_zpow_on_iff
77
Total84

Equiv.Perm

Definitions

NameCategoryTheorems
cycleFactors πŸ“–CompOpβ€”
cycleFactorsAux πŸ“–CompOpβ€”
cycleFactorsFinset πŸ“–CompOp
61 mathmath: mem_cycleFactorsFinset_conj, Basis.injective, Basis.toCentralizer_equivariant, cycleFactorsFinset_eq_empty_iff, Basis.toCentralizer_apply, disjoint_ofSubtype_noncommPiCoprod, OnCycleFactors.mem_range_toPermHom_iff', Basis.mem_support_self', OnCycleFactors.kerParam_range_card, OnCycleFactors.kerParam_injective, OnCycleFactors.nat_card_range_toPermHom, zpow_apply_mem_support_of_mem_cycleFactorsFinset_iff, cycleFactorsFinset_eq_finset, IsCycle.cycleFactorsFinset_eq_singleton, cycleFactorsFinset_eq_singleton_self_iff, Disjoint.disjoint_cycleFactorsFinset, Basis.card_ofPermHom_support, Basis.ofPermHom_apply, mem_support_iff_mem_support_of_mem_cycleFactorsFinset, OnCycleFactors.mem_range_toPermHom'_iff, cycleFactorsFinset_one, Basis.ofPermHom_mem_centralizer, support_zpowers_of_mem_cycleFactorsFinset_le, Basis.mem_support_self, OnCycleFactors.val_centralizer_smul, cycleFactorsFinset_eq_singleton_iff, Basis.toPermHom_apply_toCentralizer, OnCycleFactors.mem_ker_toPermHom_iff, Basis.ofPermHom_support, cycleFactorsFinset_pairwise_disjoint, pairwise_commute_of_mem_zpowers, Basis.ofPermHomFun_apply_mem_support_cycle_iff, mem_cycleFactorsFinset_conj', OnCycleFactors.cycleType_kerParam_apply_apply, OnCycleFactors.coe_toPermHom, cycleFactorsFinset_conj_eq, OnCycleFactors.mem_range_toPermHom_iff, OnCycleFactors.kerParam_range_eq_centralizer_of_count_le_one, cycleOf_mem_cycleFactorsFinset_iff, mem_cycleFactorsFinset_iff, Basis.mem_fixedPoints_or_exists_zpow_eq, cycleFactorsFinset_mem_commute, OnCycleFactors.toPermHom_apply, cycleFactorsFinset_eq_list_toFinset, cycleFactorsFinset_conj, Basis.ofPermHomFun_mul, cycleType_def, Basis.cycleOf_eq, OnCycleFactors.kerParam_range_le_centralizer, pairwise_disjoint_of_mem_zpowers, CycleType.count_def, Disjoint.cycleFactorsFinset_mul_eq_union, cycleFactorsFinset_injective, OnCycleFactors.kerParam_range_eq, Basis.ofPermHomFun_one, OnCycleFactors.kerParam_apply, cycleOf_ne_one_iff_mem_cycleFactorsFinset, OnCycleFactors.range_toPermHom_eq_range_toPermHom', OnCycleFactors.centralizer_smul_def, commute_ofSubtype_noncommPiCoprod, OnCycleFactors.sign_kerParam_apply_apply
cycleOf πŸ“–CompOp
45 mathmath: SameCycle.exists_pow_eq_of_mem_support, isCycle_cycleOf_iff, SameCycle.exists_pow_eq, cycleOf_inv, isCycle_cycleOf, cycleOf_self_apply_zpow, support_cycleOf_le, cycleOf_eq_one_iff, support_cycleOf_nonempty, cycleOf_one, isCycleOn_support_cycleOf, cycleOf_apply_apply_pow_self, mem_support_cycleOf_iff, cycleOf_pow_apply_self, SameCycle.cycleOf_eq, cycle_is_cycleOf, mem_support_cycleOf_iff', cycleOf_apply_apply_self, cycleOf_self_apply_pow, cycleOf_apply_apply_zpow_self, support_cycleOf_eq_nil_iff, cycleOf_apply_of_not_sameCycle, IsCycle.cycleOf_eq, formPerm_toList, IsCycle.cycleOf, zpow_eq_zpow_on_iff, cycleOf_self_apply, cycleOf_apply, pow_mod_card_support_cycleOf_self_apply, cycleOf_mem_cycleFactorsFinset_iff, sameCycle_iff_cycleOf_eq_of_mem_support, two_le_card_support_cycleOf_iff, SameCycle.cycleOf_apply, length_toList, eq_cycleOf_of_mem_cycleFactorsFinset_iff, Basis.cycleOf_eq, orderOf_cycleOf_dvd_orderOf, cycleOf_mul_of_apply_right_eq_self, List.cycleOf_formPerm, pow_mod_orderOf_cycleOf_apply, cycleOf_zpow_apply_self, cycleOf_apply_self, OnCycleFactors.kerParam_apply, Disjoint.cycleOf_mul_distrib, cycleOf_ne_one_iff_mem_cycleFactorsFinset
instDecidableRelSameCycle πŸ“–CompOp
22 mathmath: SameCycle.exists_pow_eq_of_mem_support, SameCycle.exists_pow_eq, support_cycleOf_le, support_cycleOf_nonempty, isCycleOn_support_cycleOf, mem_support_cycleOf_iff, cycle_is_cycleOf, mem_support_cycleOf_iff', support_cycleOf_eq_nil_iff, formPerm_toList, zpow_eq_zpow_on_iff, pow_mod_card_support_cycleOf_self_apply, cycleOf_mem_cycleFactorsFinset_iff, sameCycle_iff_cycleOf_eq_of_mem_support, two_le_card_support_cycleOf_iff, length_toList, eq_cycleOf_of_mem_cycleFactorsFinset_iff, Basis.cycleOf_eq, orderOf_cycleOf_dvd_orderOf, List.cycleOf_formPerm, OnCycleFactors.kerParam_apply, cycleOf_ne_one_iff_mem_cycleFactorsFinset
truncCycleFactors πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
commute_iff_of_mem_cycleFactorsFinset πŸ“–mathematicalEquiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
Commute
instMul
support
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
subtypePerm
mem_cycleFactorsFinset_support
β€”mem_cycleFactorsFinset_support
IsCycle.commute_iff'
mem_cycleFactorsFinset_iff
subtypePerm_on_cycleFactorsFinset
commute_ofSubtype_noncommPiCoprod πŸ“–mathematicalβ€”Commute
Equiv.Perm
instMul
DFunLike.coe
MonoidHom
Set
Set.instMembership
Function.fixedPoints
EquivLike.toFunLike
Equiv.instEquivLike
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
Function.fixedPoints.decidable
Pi.mulOneClass
Finset
SetLike.instMembership
Finset.instSetLike
cycleFactorsFinset
Subgroup
Subgroup.instSetLike
Subgroup.zpowers
Subgroup.toGroup
Subgroup.noncommPiCoprod
Finset.Subtype.fintype
pairwise_commute_of_mem_zpowers
β€”Disjoint.commute
pairwise_commute_of_mem_zpowers
disjoint_ofSubtype_noncommPiCoprod
commute_of_mem_cycleFactorsFinset_commute πŸ“–β€”Commute
Equiv.Perm
instMul
β€”β€”cycleFactorsFinset_mem_commute
cycleFactorsFinset_noncommProd
Finset.noncommProd_commute
cycleFactorsFinset_eq_empty_iff πŸ“–mathematicalβ€”cycleFactorsFinset
Finset
Equiv.Perm
Finset.instEmptyCollection
instOne
β€”Set.Pairwise.mono'
Disjoint.commute
instIsEmptyFalse
Finset.noncommProd_congr
Finset.coe_empty
cycleFactorsFinset_eq_finset πŸ“–mathematicalβ€”cycleFactorsFinset
IsCycle
Finset.noncommProd
Equiv.Perm
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Set.Pairwise.mono'
Disjoint
Function.onFun
Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
SetLike.coe
Finset
Finset.instSetLike
Disjoint.commute
β€”Set.Pairwise.mono'
Disjoint.commute
Finset.exists_list_nodup_eq
Finset.noncommProd_congr
Finset.noncommProd_toFinset
List.coe_toFinset
instSymmDisjoint
cycleFactorsFinset_eq_list_toFinset πŸ“–mathematicalEquiv.PermcycleFactorsFinset
List.toFinset
Fintype.decidableEqEquivFintype
IsCycle
Disjoint
instMul
instOne
β€”Trunc.exists_rep
cycleFactorsFinset.eq_1
Multiset.toFinset_eq
List.toFinset_coe
nodup_of_pairwise_disjoint_cycles
List.perm_of_nodup_nodup_toFinset_eq
Disjoint.symmetric
List.Perm.prod_eq'
Disjoint.commute
List.toFinset_eq_of_perm
list_cycles_perm_list_cycles
Finite.of_fintype
cycleFactorsFinset_eq_singleton_iff πŸ“–mathematicalβ€”cycleFactorsFinset
Equiv.Perm
Finset
Finset.instSingleton
IsCycle
β€”Set.Pairwise.mono'
Disjoint.commute
cycleFactorsFinset_eq_finset
Finset.noncommProd_congr
Finset.noncommProd_singleton
Finset.coe_singleton
cycleFactorsFinset_eq_singleton_self_iff πŸ“–mathematicalβ€”cycleFactorsFinset
Equiv.Perm
Finset
Finset.instSingleton
IsCycle
β€”Set.Pairwise.mono'
Disjoint.commute
Finset.noncommProd_congr
Finset.noncommProd_singleton
Finset.coe_singleton
cycleFactorsFinset_injective πŸ“–mathematicalβ€”Equiv.Perm
Finset
cycleFactorsFinset
β€”cycleFactorsFinset_mem_commute
cycleFactorsFinset_noncommProd
Finset.noncommProd_congr
cycleFactorsFinset_mem_commute πŸ“–mathematicalβ€”Set.Pairwise
Equiv.Perm
SetLike.coe
Finset
Finset.instSetLike
cycleFactorsFinset
Commute
instMul
β€”Set.Pairwise.mono'
Disjoint.commute
cycleFactorsFinset_pairwise_disjoint
cycleFactorsFinset_mem_commute' πŸ“–mathematicalEquiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
Commute
instMul
β€”eq_or_ne
Commute.refl
cycleFactorsFinset_mem_commute
cycleFactorsFinset_mul_inv_mem_eq_sdiff πŸ“–mathematicalEquiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
instMul
instInv
Finset.instSDiff
Fintype.decidableEqEquivFintype
Finset.instSingleton
β€”cycle_induction_on
Finite.of_fintype
cycleFactorsFinset_one
one_mul
Finset.empty_sdiff
instIsEmptyFalse
cycleFactorsFinset_eq_singleton_self_iff
mul_inv_cancel
sdiff_self
Disjoint.cycleFactorsFinset_mul_eq_union
Commute.eq
Disjoint.commute
Finset.union_comm
Finset.union_sdiff_distrib
Finset.sdiff_singleton_eq_erase
Finset.erase_eq_of_notMem
Finset.notMem_empty
Disjoint.le_bot
Disjoint.disjoint_cycleFactorsFinset
Finset.mem_inter_of_mem
mul_assoc
Disjoint.symm
Equiv.symm_apply_apply
mul_apply
mem_cycleFactorsFinset_iff
mem_support
cycleFactorsFinset_noncommProd πŸ“–mathematicalSet.Pairwise
Equiv.Perm
SetLike.coe
Finset
Finset.instSetLike
cycleFactorsFinset
Commute
instMul
cycleFactorsFinset_mem_commute
Finset.noncommProd
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
β€”Set.Pairwise.mono'
Disjoint.commute
cycleFactorsFinset_eq_finset
cycleFactorsFinset_one πŸ“–mathematicalβ€”cycleFactorsFinset
Equiv.Perm
instOne
Finset
Finset.instEmptyCollection
β€”β€”
cycleFactorsFinset_pairwise_disjoint πŸ“–mathematicalβ€”Set.Pairwise
Equiv.Perm
SetLike.coe
Finset
Finset.instSetLike
cycleFactorsFinset
Disjoint
β€”Set.Pairwise.mono'
Disjoint.commute
cycleFactorsFinset_eq_finset
cycleOf_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
cycleOf
SameCycle
β€”sameCycle_apply_right
ofSubtype_apply_of_mem
ofSubtype_apply_of_not_mem
cycleOf_apply_apply_pow_self πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
cycleOf
instPowNat
β€”cycleOf_apply_apply_zpow_self
cycleOf_apply_apply_self πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
cycleOf
β€”cycleOf_apply_apply_pow_self
cycleOf_apply_apply_zpow_self πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
cycleOf
DivInvMonoid.toZPow
Group.toDivInvMonoid
permGroup
β€”SameCycle.cycleOf_apply
add_comm
zpow_add
zpow_one
mul_apply
cycleOf_apply_of_not_sameCycle πŸ“–mathematicalSameCycleDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
cycleOf
β€”ofSubtype_apply_of_not_mem
sameCycle_apply_right
cycleOf_apply_self πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
cycleOf
β€”SameCycle.cycleOf_apply
SameCycle.rfl
cycleOf_eq_one_iff πŸ“–mathematicalβ€”cycleOf
Equiv.Perm
instOne
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
β€”cycleOf_apply
SameCycle.refl
SameCycle.apply_eq_self_iff
cycleOf_inv πŸ“–mathematicalβ€”Equiv.Perm
instInv
cycleOf
instDecidableRelSameCycleInv
β€”Equiv.ext
inv_eq_iff_eq
cycleOf_apply
Equiv.apply_symm_apply
cycleOf_mem_cycleFactorsFinset_iff πŸ“–mathematicalβ€”Equiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
cycleOf
instDecidableRelSameCycle
support
β€”mem_cycleFactorsFinset_iff
Mathlib.Tactic.Contrapose.contrapose₁
cycleOf_eq_one_iff
notMem_support
isCycle_cycleOf
mem_support
cycleOf_apply
cycleOf_apply_of_not_sameCycle
cycleOf_mul_of_apply_right_eq_self πŸ“–mathematicalCommute
Equiv.Perm
instMul
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
cycleOfβ€”ext
cycleOf_apply_apply_zpow_self
Commute.mul_zpow
zpow_apply_eq_self_of_apply_eq_self
cycleOf_apply_of_not_sameCycle
Mathlib.Tactic.Contrapose.contraposeβ‚„
cycleOf_ne_one_iff_mem_cycleFactorsFinset πŸ“–mathematicalβ€”Equiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
cycleOf
instDecidableRelSameCycle
β€”cycleOf_mem_cycleFactorsFinset_iff
mem_support
cycleOf_eq_one_iff
cycleOf_one πŸ“–mathematicalβ€”cycleOf
Equiv.Perm
instOne
β€”cycleOf_eq_one_iff
cycleOf_pow_apply_self πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instPowNat
cycleOf
β€”pow_succ'
mul_apply
cycleOf_apply
cycleOf_self_apply πŸ“–mathematicalβ€”cycleOf
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
β€”SameCycle.cycleOf_eq
SameCycle.symm
sameCycle_apply_right
SameCycle.rfl
cycleOf_self_apply_pow πŸ“–mathematicalβ€”cycleOf
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instPowNat
β€”SameCycle.cycleOf_eq
SameCycle.pow_left
SameCycle.rfl
cycleOf_self_apply_zpow πŸ“–mathematicalβ€”cycleOf
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
DivInvMonoid.toZPow
Group.toDivInvMonoid
permGroup
β€”SameCycle.cycleOf_eq
SameCycle.zpow_left
SameCycle.rfl
cycleOf_zpow_apply_self πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
DivInvMonoid.toZPow
Group.toDivInvMonoid
permGroup
cycleOf
β€”cycleOf_pow_apply_self
zpow_negSucc
inv_pow
cycleOf_inv
cycle_induction_on πŸ“–β€”Equiv.Perm
instOne
instMul
β€”β€”nonempty_fintype
disjoint_prod_right
cycle_is_cycleOf πŸ“–mathematicalFinset
Finset.instMembership
support
Equiv.Perm
cycleFactorsFinset
cycleOf
instDecidableRelSameCycle
β€”Disjoint.symm
disjoint_mul_inv_of_mem_cycleFactorsFinset
Disjoint.commute
cycleOf_mul_of_apply_right_eq_self
notMem_support
Finset.disjoint_left
Disjoint.disjoint_support
cycleOf.congr_simp
Commute.eq
inv_mul_cancel_right
symm
IsEquiv.toSymm
eq_isEquiv
IsCycle.cycleOf_eq
mem_cycleFactorsFinset_iff
mem_support
disjoint_mul_inv_of_mem_cycleFactorsFinset πŸ“–mathematicalEquiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
Disjoint
instMul
instInv
β€”mul_apply
mem_cycleFactorsFinset_iff
Equiv.apply_symm_apply
disjoint_ofSubtype_noncommPiCoprod πŸ“–mathematicalβ€”Disjoint
DFunLike.coe
MonoidHom
Equiv.Perm
Set
Set.instMembership
Function.fixedPoints
EquivLike.toFunLike
Equiv.instEquivLike
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
Function.fixedPoints.decidable
Pi.mulOneClass
Finset
SetLike.instMembership
Finset.instSetLike
cycleFactorsFinset
Subgroup
Subgroup.instSetLike
Subgroup.zpowers
Subgroup.toGroup
Subgroup.noncommPiCoprod
Finset.Subtype.fintype
pairwise_commute_of_mem_zpowers
β€”Finset.noncommProd_induction
pairwise_commute_of_mem_zpowers
Disjoint.mul_right
disjoint_one_right
Disjoint.mono
disjoint_ofSubtype_of_memFixedPoints_self
le_rfl
support_zpowers_of_mem_cycleFactorsFinset_le
eq_cycleOf_of_mem_cycleFactorsFinset_iff πŸ“–mathematicalEquiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
cycleOf
instDecidableRelSameCycle
support
β€”mem_support
cycleOf_apply_self
cycleOf_eq_one_iff
IsCycle.ne_one
mem_cycleFactorsFinset_iff
cycle_is_cycleOf
isCycleOn_support_cycleOf πŸ“–mathematicalβ€”IsCycleOn
SetLike.coe
Finset
Finset.instSetLike
support
cycleOf
instDecidableRelSameCycle
β€”β€”
isCycleOn_support_of_mem_cycleFactorsFinset πŸ“–mathematicalEquiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
IsCycleOn
SetLike.coe
Finset.instSetLike
support
β€”IsCycle.nonempty_support
mem_cycleFactorsFinset_iff
cycle_is_cycleOf
isCycleOn_support_cycleOf
isCycle_cycleOf πŸ“–mathematicalβ€”IsCycle
cycleOf
β€”SameCycle.cycleOf_apply
SameCycle.rfl
isCycle_iff_sameCycle
SameCycle.apply_eq_self_iff
cycleOf_zpow_apply_self
cycleOf_apply_of_not_sameCycle
isCycle_cycleOf_iff πŸ“–mathematicalβ€”IsCycle
cycleOf
β€”cycleOf_eq_one_iff
IsCycle.ne_one
isCycle_cycleOf
list_cycles_perm_list_cycles πŸ“–β€”Equiv.Perm
instMul
instOne
IsCycle
Disjoint
β€”β€”nodup_of_pairwise_disjoint_cycles
mem_list_cycles_iff
mem_cycleFactorsFinset_conj πŸ“–mathematicalβ€”Equiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
instMul
instInv
β€”IsCycle.conj
EquivLike.toEmbeddingLike
support_conj
neg_add_cancel
zpow_zero
one_mul
Mathlib.Tactic.Group.zpow_trick_one'
mul_one
mem_cycleFactorsFinset_iff πŸ“–mathematicalβ€”Equiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
IsCycle
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
β€”Finset.exists_list_nodup_eq
cycleFactorsFinset_eq_list_toFinset
mem_list_cycles_iff
Finite.of_fintype
mem_cycleFactorsFinset_support πŸ“–mathematicalEquiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
support
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
β€”mem_support_iff_of_commute
Commute.symm
self_mem_cycle_factors_commute
mem_cycleFactorsFinset_support_le πŸ“–mathematicalEquiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
support
β€”mem_support
mem_cycleFactorsFinset_iff
mem_list_cycles_iff πŸ“–mathematicalIsCycle
Equiv.Perm
Disjoint
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
instMul
instOne
β€”nonempty_fintype
eq_on_support_mem_disjoint
mem_support
exists_mem_support_of_mem_support_prod
Finset.mem_of_mem_inter_left
Finset.mem_of_mem_inter_right
IsCycle.eq_on_support_inter_nonempty_congr
Finset.mem_inter_of_mem
mem_support_cycleOf_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
cycleOf
instDecidableRelSameCycle
SameCycle
β€”β€”
mem_support_cycleOf_iff' πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
cycleOf
instDecidableRelSameCycle
SameCycle
β€”β€”
mem_support_cycle_of_cycle πŸ“–mathematicalEquiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
support
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
β€”EmbeddingLike.apply_eq_iff_eq
EquivLike.toEmbeddingLike
mul_apply
Commute.eq
cycleFactorsFinset_mem_commute
mem_support_iff_mem_support_of_mem_cycleFactorsFinset πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
Equiv.Perm
cycleFactorsFinset
β€”cycleOf_mem_cycleFactorsFinset_iff
mem_support_cycleOf_iff
SameCycle.refl
mem_cycleFactorsFinset_support_le
pairwise_commute_of_mem_zpowers πŸ“–mathematicalβ€”Pairwise
Equiv.Perm
Finset
SetLike.instMembership
Finset.instSetLike
cycleFactorsFinset
β€”Pairwise.mono
pairwise_disjoint_of_mem_zpowers
forallβ‚‚_imp
Disjoint.commute
pairwise_disjoint_of_mem_zpowers πŸ“–mathematicalβ€”Pairwise
Equiv.Perm
Finset
SetLike.instMembership
Finset.instSetLike
cycleFactorsFinset
β€”Disjoint.zpow_disjoint_zpow
cycleFactorsFinset_pairwise_disjoint
Subtype.prop
Subtype.coe_ne_coe
pow_mod_card_support_cycleOf_self_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instPowNat
Finset.card
support
cycleOf
instDecidableRelSameCycle
β€”pow_apply_eq_self_of_apply_eq_self
cycleOf_pow_apply_self
IsCycle.orderOf
isCycle_cycleOf
pow_mod_orderOf
pow_mod_orderOf_cycleOf_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instPowNat
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
cycleOf
β€”cycleOf_pow_apply_self
pow_mod_orderOf
sameCycle_iff_cycleOf_eq_of_mem_support πŸ“–mathematicalFinset
Finset.instMembership
support
SameCycle
cycleOf
instDecidableRelSameCycle
β€”SameCycle.cycleOf_eq
mem_support_cycleOf_iff'
mem_support
SameCycle.refl
self_mem_cycle_factors_commute πŸ“–mathematicalEquiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
Commute
instMul
β€”commute_of_mem_cycleFactorsFinset_commute
Commute.refl
cycleFactorsFinset_mem_commute
subtypePerm_on_cycleFactorsFinset πŸ“–mathematicalEquiv.Perm
Finset
Finset.instMembership
cycleFactorsFinset
subtypePerm
support
mem_cycleFactorsFinset_support
subtypePermOfSupport
β€”ext
mem_cycleFactorsFinset_support
mem_cycleFactorsFinset_iff
support_cycleOf_eq_nil_iff πŸ“–mathematicalβ€”support
cycleOf
instDecidableRelSameCycle
Finset
Finset.instEmptyCollection
Finset.instMembership
β€”β€”
support_cycleOf_le πŸ“–mathematicalβ€”Finset
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
support
cycleOf
instDecidableRelSameCycle
β€”mem_support
cycleOf_apply
support_cycleOf_nonempty πŸ“–mathematicalβ€”Finset.Nonempty
support
cycleOf
instDecidableRelSameCycle
β€”two_le_card_support_cycleOf_iff
Finset.card_pos
LE.le.eq_or_lt
card_support_ne_one
LT.lt.trans_le
Nat.instAtLeastTwoHAddOfNat
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
support_zpowers_of_mem_cycleFactorsFinset_le πŸ“–mathematicalβ€”Finset
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
support
Equiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
Finset.instSetLike
cycleFactorsFinset
β€”Subtype.prop
le_trans
support_zpow_le
mem_cycleFactorsFinset_support_le
two_le_card_support_cycleOf_iff πŸ“–mathematicalβ€”Finset.card
support
cycleOf
instDecidableRelSameCycle
β€”Mathlib.Tactic.Contrapose.contrapose₃
cycleOf_eq_one_iff
support_one
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Nat.instAtLeastTwoHAddOfNat
IsCycle.two_le_card_support
isCycle_cycleOf
zpow_apply_mem_support_of_mem_cycleFactorsFinset_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
Equiv.Perm
SetLike.instMembership
Finset.instSetLike
cycleFactorsFinset
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
DivInvMonoid.toZPow
Group.toDivInvMonoid
permGroup
β€”eq_cycleOf_of_mem_cycleFactorsFinset_iff
Subtype.prop
cycleOf_self_apply_zpow
zpow_eq_zpow_on_iff πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
DivInvMonoid.toZPow
Group.toDivInvMonoid
permGroup
Finset.card
support
cycleOf
instDecidableRelSameCycle
β€”zpow_add
EquivLike.toEmbeddingLike
cycleOf_zpow_apply_self
cycle_zpow_mem_support_iff
isCycle_cycleOf
cycleOf_apply_self

Equiv.Perm.Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
cycleFactorsFinset_mul_eq_union πŸ“–mathematicalEquiv.Perm.DisjointEquiv.Perm.cycleFactorsFinset
Equiv.Perm
Equiv.Perm.instMul
Finset
Finset.instUnion
Fintype.decidableEqEquivFintype
β€”Set.Pairwise.mono'
commute
Equiv.Perm.cycleFactorsFinset_eq_finset
Finset.coe_union
Set.pairwise_union_of_symmetric
symmetric
Equiv.Perm.cycleFactorsFinset_pairwise_disjoint
mono
Equiv.Perm.mem_cycleFactorsFinset_support_le
Set.Pairwise.mono
Finset.coe_subset
Finset.subset_union_left
Finset.subset_union_right
Finset.noncommProd_union_of_disjoint
disjoint_cycleFactorsFinset
Equiv.Perm.cycleFactorsFinset_mem_commute
Equiv.Perm.cycleFactorsFinset_noncommProd
cycleOf_mul_distrib πŸ“–mathematicalEquiv.Perm.DisjointEquiv.Perm.cycleOf
Equiv.Perm
Equiv.Perm.instMul
β€”Equiv.Perm.disjoint_iff_eq_or_eq
Equiv.Perm.cycleOf.congr_simp
Commute.eq
commute
Equiv.Perm.cycleOf_mul_of_apply_right_eq_self
symm
RightCancelSemigroup.toIsRightCancelMul
LeftCancelSemigroup.toIsLeftCancelMul
disjoint_cycleFactorsFinset πŸ“–mathematicalEquiv.Perm.DisjointDisjoint
Finset
Equiv.Perm
Finset.partialOrder
Finset.instOrderBot
Equiv.Perm.cycleFactorsFinset
β€”Finset.disjoint_left
Disjoint.le_bot
Equiv.Perm.disjoint_iff_disjoint_support

Equiv.Perm.IsCycle

Theorems

NameKindAssumesProvesValidatesDepends On
cycleFactorsFinset_eq_singleton πŸ“–mathematicalEquiv.Perm.IsCycleEquiv.Perm.cycleFactorsFinset
Equiv.Perm
Finset
Finset.instSingleton
β€”Equiv.Perm.cycleFactorsFinset_eq_singleton_self_iff
cycleOf πŸ“–mathematicalEquiv.Perm.IsCycleEquiv.Perm.cycleOf
Equiv.Perm
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.Perm.instOne
β€”Equiv.Perm.cycleOf_eq_one_iff
cycleOf_eq
cycleOf_eq πŸ“–mathematicalEquiv.Perm.IsCycleEquiv.Perm.cycleOfβ€”Equiv.ext
Equiv.Perm.SameCycle.cycleOf_apply
Equiv.Perm.cycleOf_apply_of_not_sameCycle
Equiv.Perm.isCycle_iff_sameCycle
forall_commute_iff πŸ“–mathematicalβ€”Commute
Equiv.Perm
Equiv.Perm.instMul
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
DFunLike.coe
MonoidHom
Finset
Finset.instMembership
Equiv.Perm.support
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
Equiv.Perm.ofSubtype
Finset.decidableMem
Equiv.Perm.subtypePerm
β€”commute_iff
Equiv.Perm.mem_cycleFactorsFinset_iff

Equiv.Perm.SameCycle

Theorems

NameKindAssumesProvesValidatesDepends On
cycleOf_apply πŸ“–mathematicalEquiv.Perm.SameCycleDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.Perm.cycleOf
β€”Equiv.Perm.ofSubtype_apply_of_mem
Equiv.Perm.sameCycle_apply_right
cycleOf_eq πŸ“–mathematicalEquiv.Perm.SameCycleEquiv.Perm.cycleOfβ€”Equiv.Perm.ext
Equiv.Perm.cycleOf_apply
cycleOf_apply
trans
symm
Equiv.Perm.cycleOf_apply_of_not_sameCycle
exists_pow_eq πŸ“–mathematicalEquiv.Perm.SameCycleFinset.card
Equiv.Perm.support
Equiv.Perm.cycleOf
Equiv.Perm.instDecidableRelSameCycle
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.Perm.instPowNat
β€”exists_pow_eq_of_mem_support
self_le_add_right
Nat.instCanonicallyOrderedAdd
Equiv.Perm.IsCycle.orderOf
Equiv.Perm.isCycle_cycleOf
Equiv.Perm.mem_support
Equiv.Perm.cycleOf_pow_apply_self
pow_orderOf_eq_one
Equiv.Perm.one_apply
pow_zero
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
LT.lt.le
zero_lt_one
Nat.instZeroLEOneClass
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
Equiv.Perm.pow_apply_eq_self_of_apply_eq_self
Equiv.Perm.notMem_support
Equiv.Perm.zpow_apply_eq_self_of_apply_eq_self
exists_pow_eq_of_mem_support πŸ“–mathematicalEquiv.Perm.SameCycle
Finset
Finset.instMembership
Equiv.Perm.support
Finset.card
Equiv.Perm.cycleOf
Equiv.Perm.instDecidableRelSameCycle
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.Perm.instPowNat
β€”β€”
mem_support_iff πŸ“–mathematicalEquiv.Perm.SameCycleFinset
Finset.instMembership
Equiv.Perm.support
β€”Equiv.Perm.support_cycleOf_le
Equiv.Perm.mem_support_cycleOf_iff
symm

Equiv.Perm.cycleFactorsAux

Definitions

NameCategoryTheorems
go πŸ“–CompOpβ€”

---

← Back to Index