Documentation Verification Report

Finite

πŸ“ Source: Mathlib/GroupTheory/Perm/Finite.lean

Statistics

MetricCount
DefinitionssubtypePermOfFintype
1
TheoremsextendDomain, isConj_mul, orderOf, apply_mem_fixedPoints_iff_mem_of_mem_centralizer, disjoint_closure_of_disjoint_support, disjoint_ofSubtype_of_memFixedPoints_self, disjoint_of_disjoint_support, disjoint_support_closure_of_disjoint_support, isConj_of_support_equiv, mem_sumCongrHom_range_of_perm_mapsTo_inl, ofSubtype_support_disjoint, perm_inv_mapsTo_iff_mapsTo, perm_inv_mapsTo_of_mapsTo, perm_inv_on_of_perm_on_finite, perm_inv_on_of_perm_on_finset, perm_mapsTo_inl_iff_mapsTo_inr, perm_symm_mapsTo_iff_mapsTo, perm_symm_mapsTo_of_mapsTo, perm_symm_on_of_perm_on_finite, perm_symm_on_of_perm_on_finset, subtypePermOfFintype_apply, subtypePermOfFintype_one, support_closure_subset_union, support_pow_coprime
24
Total25

Equiv.Perm

Definitions

NameCategoryTheorems
subtypePermOfFintype πŸ“–CompOp
2 mathmath: subtypePermOfFintype_apply, subtypePermOfFintype_one

Theorems

NameKindAssumesProvesValidatesDepends On
apply_mem_fixedPoints_iff_mem_of_mem_centralizer πŸ“–mathematicalEquiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.centralizer
Set
Set.instSingletonSet
Set.instMembership
Function.fixedPoints
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
β€”mul_apply
EmbeddingLike.apply_eq_iff_eq
EquivLike.toEmbeddingLike
disjoint_closure_of_disjoint_support πŸ“–mathematicalDisjoint
Finset
Finset.partialOrder
Finset.instOrderBot
support
Subgroup
Equiv.Perm
permGroup
Subgroup.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
Subgroup.closure
β€”disjoint_of_disjoint_support
disjoint_support_closure_of_disjoint_support
disjoint_ofSubtype_of_memFixedPoints_self πŸ“–mathematicalβ€”Disjoint
DFunLike.coe
MonoidHom
Equiv.Perm
Set
Set.instMembership
Function.fixedPoints
EquivLike.toFunLike
Equiv.instEquivLike
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
Function.fixedPoints.decidable
β€”disjoint_iff_eq_or_eq
ofSubtype_apply_of_not_mem
disjoint_of_disjoint_support πŸ“–mathematicalDisjoint
Finset
Finset.partialOrder
Finset.instOrderBot
support
Subgroup
Equiv.Perm
permGroup
Subgroup.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
β€”disjoint_iff_inf_le
support_eq_empty_iff
Finset.bot_eq_empty
disjoint_self
disjoint_support_closure_of_disjoint_support πŸ“–β€”Disjoint
Finset
Finset.partialOrder
Finset.instOrderBot
support
Equiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.closure
β€”β€”support_closure_subset_union
Set.disjoint_of_subset
isConj_of_support_equiv πŸ“–mathematicalSet
Set.instMembership
SetLike.coe
Finset
Finset.instSetLike
support
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.Perm
Finset.instMembership
apply_mem_support
IsConj
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
β€”apply_mem_support
isConj_iff
Finite.of_fintype
mul_inv_eq_iff_eq_mul
ext
Finset.mem_coe
Equiv.extendSubtype_apply_of_mem
mem_support
Equiv.extendSubtype_not_mem
mem_sumCongrHom_range_of_perm_mapsTo_inl πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Set.range
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
MonoidHom.range
Prod.instGroup
sumCongrHom
β€”perm_mapsTo_inl_iff_mapsTo_inr
Subtype.finite
Finite.instSum
Sum.inl_injective
Sum.inr_injective
MonoidHom.mem_range
sumCongrHom_apply
ext
Equiv.sumCongr_apply
Equiv.permCongr_apply
Equiv.symm_symm
Equiv.apply_ofInjective_symm
Equiv.ofInjective_apply
subtypePerm_apply
ofSubtype_support_disjoint πŸ“–mathematicalβ€”Disjoint
Finset
Finset.partialOrder
Finset.instOrderBot
support
DFunLike.coe
MonoidHom
Equiv.Perm
Set
Set.instMembership
Function.fixedPoints
EquivLike.toFunLike
Equiv.instEquivLike
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
Function.fixedPoints.decidable
β€”Finset.disjoint_iff_ne
mem_support
ofSubtype_apply_of_not_mem
Function.mem_fixedPoints_iff
perm_inv_mapsTo_iff_mapsTo πŸ“–mathematicalβ€”Set.MapsTo
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.Perm
β€”perm_symm_mapsTo_iff_mapsTo
perm_inv_mapsTo_of_mapsTo πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv
Equiv.symm
β€”perm_symm_mapsTo_of_mapsTo
perm_inv_on_of_perm_on_finite πŸ“–mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv
Equiv.symm
β€”perm_symm_on_of_perm_on_finite
perm_inv_on_of_perm_on_finset πŸ“–mathematicalFinset
Finset.instMembership
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv
Equiv.symm
β€”perm_symm_on_of_perm_on_finset
perm_mapsTo_inl_iff_mapsTo_inr πŸ“–mathematicalβ€”Set.MapsTo
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Set.range
β€”perm_symm_mapsTo_iff_mapsTo
Finite.Set.finite_range
perm_symm_mapsTo_iff_mapsTo πŸ“–mathematicalβ€”Set.MapsTo
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.Perm
β€”perm_symm_mapsTo_of_mapsTo
perm_symm_mapsTo_of_mapsTo πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv
Equiv.symm
β€”nonempty_fintype
Set.mem_toFinset
perm_symm_on_of_perm_on_finset
perm_symm_on_of_perm_on_finite πŸ“–mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv
Equiv.symm
β€”perm_symm_mapsTo_of_mapsTo
perm_symm_on_of_perm_on_finset πŸ“–mathematicalFinset
Finset.instMembership
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv
Equiv.symm
β€”Finset.surj_on_of_inj_on_of_card_le
Equiv.apply_eq_iff_eq
Eq.ge
Equiv.symm_apply_apply
subtypePermOfFintype_apply πŸ“–mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
subtypePermOfFintypeβ€”β€”
subtypePermOfFintype_one πŸ“–mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instOne
subtypePermOfFintypeβ€”β€”
support_closure_subset_union πŸ“–mathematicalEquiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.closure
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
support
Set.iUnion
Set.instMembership
β€”Subgroup.closure_induction
Set.subset_iUnionβ‚‚_of_subset
subset_rfl
Set.instReflSubset
support_one
Finset.coe_empty
HasSubset.Subset.trans
Set.instIsTransSubset
Finset.coe_subset
support_mul_le
Finset.sup_eq_union
Finset.coe_union
Set.union_subset_iff
support_inv
support_pow_coprime πŸ“–mathematicalorderOf
Equiv.Perm
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
support
instPowNat
β€”exists_pow_eq_self_of_coprime
le_antisymm
support_pow_le
le_trans
ge_of_eq

Equiv.Perm.Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
extendDomain πŸ“–mathematicalEquiv.Perm.DisjointEquiv.Perm.extendDomainβ€”Equiv.Perm.extendDomain_apply_subtype
Equiv.apply_symm_apply
Equiv.Perm.extendDomain_apply_not_subtype
isConj_mul πŸ“–mathematicalIsConj
Equiv.Perm
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
Equiv.Perm.Disjoint
Equiv.Perm.instMulβ€”nonempty_fintype
isConj_iff
support_mul
Finset.disjoint_coe
Equiv.Perm.disjoint_iff_disjoint_support
Equiv.Perm.isConj_of_support_equiv
Finset.coe_union
Equiv.Perm.support_conj
Finset.coe_map
Set.image_congr
Equiv.Perm.apply_mem_support
Set.mem_union
Equiv.Perm.mul_apply
Equiv.Perm.mem_support
Finset.mem_coe
Equiv.Set.union_apply_left
Equiv.Perm.coe_inv
Equiv.symm_apply_apply
Equiv.apply_eq_iff_eq
Equiv.Set.union_apply_right
orderOf πŸ“–mathematicalEquiv.Perm.DisjointorderOf
Equiv.Perm
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
Equiv.Perm.instMul
β€”Commute.orderOf_mul_dvd_lcm
commute
orderOf_dvd_of_pow_eq_one
Commute.mul_pow
mul_eq_one_iff
pow_disjoint_pow
pow_orderOf_eq_one

---

← Back to Index