Documentation Verification Report

MaximalSubgroups

πŸ“ Source: Mathlib/GroupTheory/Perm/MaximalSubgroups.lean

Statistics

MetricCount
Definitions0
Theoremsexists_mem_stabilizer_smul_eq, has_swap_mem_of_lt_stabilizer, isCoatom_stabilizer, isCoatom_stabilizer_of_ncard_lt_ncard_compl, moves_in, ofSubtype_mem_stabilizer, surjective_toPerm, stabilizer_isPreprimitive, stabilizer_ne_top_of_nonempty_of_nonempty_compl, swap_mem_stabilizer, compl_subset_of_stabilizer_le_of_not_subset_of_not_subset_compl, subsingleton_of_ssubset_compl_of_stabilizer_le, compl_subset_of_stabilizer_le_of_not_subset_of_not_subset_compl, subsingleton_of_ssubset_of_stabilizer_Perm_le, subsingleton_of_ssubset_of_stabilizer_le, subsingleton_of_stabilizer_lt_of_subset, of_partition, isPreprimitive_stabilizer_of_surjective, isPreprimitive_stabilizer_subgroup, isPretransitive_of_stabilizer_lt
20
Total20

Equiv.Perm

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem_stabilizer_smul_eq πŸ“–mathematicalSet
Set.instMembership
Equiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
applyMulAction
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”swap_mem_stabilizer
Equiv.swap_apply_left
has_swap_mem_of_lt_stabilizer πŸ“–mathematicalSubgroup
Equiv.Perm
permGroup
Preorder.toLT
PartialOrder.toPreorder
Subgroup.instPartialOrder
MulAction.stabilizer
Set
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
applyMulAction
IsSwap
SetLike.instMembership
Subgroup.instSetLike
β€”Set.one_lt_encard_iff
swap_isSwap_iff
swap_mem_stabilizer
lt_or_ge
LT.lt.le
stabilizer_compl
Nat.instAtLeastTwoHAddOfNat
Set.encard_add_encard_compl
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
le_antisymm
Set.one_le_encard_iff_nonempty
Set.nonempty_iff_ne_empty
MulAction.stabilizer_empty
MulAction.stabilizer_univ
finite_iff_nonempty_fintype
Set.univ_finite_iff_nonempty_fintype
Set.finite_of_encard_eq_coe
Set.ncard_univ
Nat.card_coe_set_eq
ENat.card_eq_coe_natCard
Subtype.finite
ENat.card_coe_set_eq
Nat.card_perm
Nat.factorial_two
Nat.prime_two
Subgroup.eq_bot_or_eq_top_of_prime_card
ne_bot_of_gt
stabilizer_univ_eq_top
Set.encard_univ
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
isCoatom_stabilizer πŸ“–mathematicalSet.Nonempty
Compl.compl
Set
Set.instCompl
IsCoatom
Subgroup
Equiv.Perm
permGroup
PartialOrder.toPreorder
Subgroup.instPartialOrder
BoundedOrder.toOrderTop
Preorder.toLE
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
MulAction.stabilizer
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
applyMulAction
β€”isCoatom_stabilizer_of_ncard_lt_ncard_compl
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Set.ncard_add_ncard_compl
Set.toFinite
Subtype.finite
Nat.instAtLeastTwoHAddOfNat
two_mul
stabilizer_compl
compl_compl
isCoatom_stabilizer_of_ncard_lt_ncard_compl πŸ“–mathematicalSet.Nonempty
Set.ncard
Compl.compl
Set
Set.instCompl
IsCoatom
Subgroup
Equiv.Perm
permGroup
PartialOrder.toPreorder
Subgroup.instPartialOrder
BoundedOrder.toOrderTop
Preorder.toLE
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
MulAction.stabilizer
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
applyMulAction
β€”Set.nonempty_iff_ne_empty
Set.ncard_univ
Set.compl_univ
Set.ncard_empty
Nat.instCanonicallyOrderedAdd
stabilizer_ne_top_of_nonempty_of_nonempty_compl
stabilizer_compl
has_swap_mem_of_lt_stabilizer
subgroup_eq_top_of_isPreprimitive_of_isSwap_mem
Subgroup.isPretransitive_of_stabilizer_lt
exists_mem_stabilizer_smul_eq
lt_or_ge
Set.Nonempty.ne_empty
Set.compl_univ_iff
MulAction.IsBlock.eq_univ_of_card_lt
not_lt
Set.ncard_add_ncard_compl
Set.toFinite
Subtype.finite
Nat.instAtLeastTwoHAddOfNat
mul_two
add_lt_add_iff_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
compl_compl
MulAction.IsBlock.subsingleton_of_ssubset_of_stabilizer_Perm_le
HasSubset.Subset.ssubset_of_ne
Set.instIsNonstrictStrictOrderSubsetSSubset
Set.instAntisymmSubset
LT.lt.le
MulAction.isPreprimitive_stabilizer_subgroup
stabilizer_isPreprimitive
MulAction.IsBlock.subsingleton_of_stabilizer_lt_of_subset
isMultiplyPretransitive
MulAction.IsBlock.compl_subset_of_stabilizer_le_of_not_subset_of_not_subset_compl
Set.ncard_le_ncard
moves_in πŸ“–mathematicalSet
Set.instMembership
Equiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
applyMulAction
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”exists_mem_stabilizer_smul_eq
ofSubtype_mem_stabilizer πŸ“–mathematicalβ€”Equiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
Set
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
applyMulAction
DFunLike.coe
MonoidHom
Set.instMembership
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
ofSubtype
β€”MulAction.mem_stabilizer_iff
Set.ext
ofSubtype_apply_of_mem
ofSubtype_apply_coe
Equiv.apply_symm_apply
stabilizer_isPreprimitive πŸ“–mathematicalβ€”MulAction.IsPreprimitive
Equiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
Set
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
applyMulAction
Set.Elem
SMul.ofStabilizer
β€”MulAction.isPreprimitive_stabilizer_of_surjective
stabilizer.surjective_toPerm
stabilizer_ne_top_of_nonempty_of_nonempty_compl πŸ“–β€”Set.Nonempty
Compl.compl
Set
Set.instCompl
β€”β€”Set.mem_compl_iff
MulAction.mem_stabilizer_iff
Set.mem_smul_set
swap_mem_stabilizer πŸ“–mathematicalSet
Set.instMembership
Equiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
applyMulAction
Equiv.swap
β€”Equiv.swap_apply_of_ne_of_ne
MulAction.mem_stabilizer_iff
Set.Subset.antisymm
Set.subset_smul_set_iff

Equiv.Perm.stabilizer

Theorems

NameKindAssumesProvesValidatesDepends On
surjective_toPerm πŸ“–mathematicalβ€”Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
Set
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.applyMulAction
Set.Elem
MulAction.toPerm
Subgroup.toGroup
instMulActionSubtypeMemSubgroupStabilizerSetElem
β€”Equiv.Perm.ofSubtype_mem_stabilizer
Equiv.Perm.ext
Equiv.Perm.ofSubtype_apply_coe

IsBlock

Theorems

NameKindAssumesProvesValidatesDepends On
compl_subset_of_stabilizer_le_of_not_subset_of_not_subset_compl πŸ“–β€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MulAction.stabilizer
Set
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set.instHasSubset
Compl.compl
Set.instCompl
MulAction.IsBlock
SetLike.instMembership
Subgroup.instSetLike
SemigroupAction.toSMul
Monoid.toSemigroup
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
β€”β€”MulAction.IsBlock.compl_subset_of_stabilizer_le_of_not_subset_of_not_subset_compl
subsingleton_of_ssubset_compl_of_stabilizer_le πŸ“–mathematicalSet
Set.instHasSSubset
MulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
Set.mulActionSet
Equiv.Perm
Set.Elem
MulAction.toPerm
Subgroup.toGroup
instMulActionSubtypeMemSubgroupStabilizerSetElem
Set.Subsingletonβ€”MulAction.IsBlock.subsingleton_of_ssubset_of_stabilizer_le

MulAction

Theorems

NameKindAssumesProvesValidatesDepends On
isPreprimitive_stabilizer_of_surjective πŸ“–mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
stabilizer
Set
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm
Set.Elem
toPerm
Subgroup.toGroup
instMulActionSubtypeMemSubgroupStabilizerSetElem
IsPreprimitive
SMul.ofStabilizer
β€”Function.bijective_id
isPreprimitive_congr
Equiv.Perm.instIsPreprimitive
isPreprimitive_stabilizer_subgroup πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
stabilizer
Set
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
IsPreprimitive
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.instMulAction
Set.Elem
SMul.ofStabilizer
β€”Subtype.prop
IsPreprimitive.of_surjective

MulAction.IsBlock

Theorems

NameKindAssumesProvesValidatesDepends On
compl_subset_of_stabilizer_le_of_not_subset_of_not_subset_compl πŸ“–β€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MulAction.stabilizer
Set
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set.instHasSubset
Compl.compl
Set.instCompl
MulAction.IsBlock
SetLike.instMembership
Subgroup.instSetLike
SemigroupAction.toSMul
Monoid.toSemigroup
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
β€”β€”IsScalarTower.left
MulAction.is_one_pretransitive_iff
SubMulAction.ofFixingSubgroup.isMultiplyPretransitive
Subtype.finite
MulAction.IsPretransitive.exists_smul_eq
SubMulAction.val_smul
MulAction.isBlock_iff_smul_eq_of_nonempty
MulAction.fixingSubgroup_le_stabilizer
mem_fixingSubgroup_iff
Set.smul_mem_smul_set
Eq.le
subsingleton_of_ssubset_of_stabilizer_Perm_le πŸ“–mathematicalMulAction.IsBlock
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
Equiv.Perm.applyMulAction
Set
Set.instHasSSubset
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MulAction.stabilizer
Set.mulActionSet
Set.Subsingletonβ€”subsingleton_of_ssubset_of_stabilizer_le
Equiv.Perm.stabilizer.surjective_toPerm
subsingleton_of_ssubset_of_stabilizer_le πŸ“–mathematicalSet
Set.instHasSSubset
MulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
Set.mulActionSet
Equiv.Perm
Set.Elem
MulAction.toPerm
Subgroup.toGroup
instMulActionSubtypeMemSubgroupStabilizerSetElem
Set.Subsingletonβ€”Set.inter_eq_self_of_subset_right
subset_of_ssubset
Set.instIsNonstrictStrictOrderSubsetSSubset
Subtype.image_preimage_val
Set.Subsingleton.image
Function.bijective_id
MulAction.isPreprimitive_congr
Equiv.Perm.instIsPreprimitive
MulAction.IsPreprimitive.isTrivialBlock_of_isBlock
preimage
Set.preimage_eq_univ_iff
Subtype.range_coe_subtype
not_subset_of_ssubset
subsingleton_of_stabilizer_lt_of_subset πŸ“–β€”MulAction.IsBlock
Subgroup
SetLike.instMembership
Subgroup.instSetLike
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
Set.Subsingleton
Preorder.toLT
PartialOrder.toPreorder
Subgroup.instPartialOrder
MulAction.stabilizer
Set
Set.mulActionSet
Set.instHasSubset
β€”β€”MulAction.IsPreprimitive.isTrivialBlock_of_isBlock
preimage
Set.inter_eq_self_of_subset_right
Subtype.image_preimage_val
Set.Subsingleton.image
Set.Subset.antisymm
Subtype.range_coe_subtype
SetLike.exists_of_lt
instIsConcreteLE
MulAction.isBlock_iff_smul_eq_or_disjoint
translate
Disjoint.subset_compl_right
Set.subsingleton_of_image
MulAction.injective

MulAction.IsPretransitive

Theorems

NameKindAssumesProvesValidatesDepends On
of_partition πŸ“–mathematicalSemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
MulAction.IsPretransitiveβ€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
eq_top_iff
MulAction.le_stabilizer_iff_smul_le
Set.mem_compl
MulAction.isPretransitive_iff_base
Set.mem_compl_iff
SemigroupAction.mul_smul

Subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
isPretransitive_of_stabilizer_lt πŸ“–mathematicalSubgroup
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
MulAction.stabilizer
Set
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.instMembership
instSetLike
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulAction.IsPretransitive
toGroup
instMulAction
β€”MulAction.IsPretransitive.of_partition
LT.lt.le
stabilizer_compl
Mathlib.Tactic.Contrapose.contrapose₃
not_lt_of_ge
MonoidHom.range_eq_map
range_subtype
map_le_iff_le_comap
le_refl

---

← Back to Index