Documentation Verification Report

Sign

πŸ“ Source: Mathlib/GroupTheory/Perm/Sign.lean

Statistics

MetricCount
DefinitionsfinPairsLT, instDecidableRelROfFintype, modSwap, ofSign, sign, signAux, signAux2, signAux3, signBijAux, swapFactors, swapFactorsAux, truncSwapFactors
12
Theoremssign_eq, closure_isSwap, eq_sign_of_surjective_hom, isConj_swap, mclosure_isSwap, mclosure_swap_castSucc_succ, mem_finPairsLT, mem_ofSign, ofSign_disjUnion, ofSign_disjoint, prod_prodExtendRight, signAux3_mul_and_swap, signAux3_symm_trans_trans, signAux_eq_signAux2, signAux_inv, signAux_mul, signAux_one, signAux_swap, signBijAux_injOn, signBijAux_mem, signBijAux_surj, sign_abs, sign_bij, sign_eq_sign_of_equiv, sign_extendDomain, sign_inv, sign_mul, sign_ofSubtype, sign_one, sign_permCongr, sign_prodCongrLeft, sign_prodCongrRight, sign_prodExtendRight, sign_prod_list_swap, sign_refl, sign_subtypeCongr, sign_subtypePerm, sign_sumCongr, sign_surjective, sign_swap, sign_swap', sign_symm, sign_symm_trans_trans, sign_trans, sign_trans_trans_symm, swap_induction_on, swap_induction_on', viaFintypeEmbedding_sign
48
Total60

Equiv.Perm

Definitions

NameCategoryTheorems
finPairsLT πŸ“–CompOp
2 mathmath: mem_finPairsLT, signBijAux_injOn
instDecidableRelROfFintype πŸ“–CompOpβ€”
modSwap πŸ“–CompOpβ€”
ofSign πŸ“–CompOp
4 mathmath: Matrix.adjp_apply, ofSign_disjoint, mem_ofSign, ofSign_disjUnion
sign πŸ“–CompOp
69 mathmath: Fin.sign_cycleIcc_of_eq, AlternatingMap.domCoprod.summand_mk'', Matrix.det_apply, ContinuousMultilinearMap.alternatization_apply_apply, AlternatingMap.map_perm, sign_of_cycleType, Matrix.det_permute, sign_subtypePerm, sign_trans_trans_symm, viaFintypeEmbedding_sign, sign_symm, Fin.sign_cycleRange, sign_eq_prod_prod_Ioi, prod_Ioi_comp_eq_sign_mul_prod, alternatingGroup.normalClosure_swap_mul_swap_five, sign_of_cycleType_eq_replicate, decomposeFin.symm_sign, AlternatingMap.map_congr_perm, sign_prodExtendRight, sign_abs, Fin.sign_cycleIcc_of_ge, MultilinearMap.domCoprod_alternization_coe, sign_trans, sign_sumCongr, sign_eq_prod_prod_Iio, Matrix.det_permutation, NumberField.InfinitePlace.ComplexEmbedding.conjugate_sign, sign_bij, Fin.sign_cycleIcc_of_le, mem_alternatingGroup, Matrix.det_reindex, sign_of_pow_two_eq_one, sign_refl, sign_mul, sign_symm_trans_trans, mem_ofSign, MultilinearMap.alternatization_apply, decomposeOption_symm_sign, sign_permCongr, ContinuousMultilinearMap.alternatization_apply_toContinuousMultilinearMap, Matrix.det_mul_aux, Matrix.det_permute', MultilinearMap.alternatization_coe, sign_extendDomain, sign_finRotate, eq_sign_of_surjective_hom, IsCycle.sign, sign_inv, IsThreeCycle.sign, AlternatingMap.domDomCongr_perm, IsSwap.sign_eq, sign_prodCongrRight, sign_eq_sign_of_equiv, sign_one, Matrix.det_apply', sign_prod_list_swap, sign_prodCongrLeft, sign_of_cycleType', sign_subtypeCongr, exteriorPower.toTensorPower_apply_ΞΉMulti, prod_Iio_comp_eq_sign_mul_prod, alternatingGroup_eq_sign_ker, Equiv.optionCongr_sign, sign_swap', sign_swap, sign_ofSubtype, MultilinearMap.alternatization_def, sign_surjective, OnCycleFactors.sign_kerParam_apply_apply
signAux πŸ“–CompOp
5 mathmath: signAux_swap, signAux_inv, signAux_one, signAux_eq_signAux2, signAux_mul
signAux2 πŸ“–CompOp
1 mathmath: signAux_eq_signAux2
signAux3 πŸ“–CompOp
2 mathmath: signAux3_symm_trans_trans, signAux3_mul_and_swap
signBijAux πŸ“–CompOp
3 mathmath: signBijAux_surj, signBijAux_mem, signBijAux_injOn
swapFactors πŸ“–CompOpβ€”
swapFactorsAux πŸ“–CompOpβ€”
truncSwapFactors πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
closure_isSwap πŸ“–mathematicalβ€”Subgroup.closure
Equiv.Perm
permGroup
setOf
IsSwap
Top.top
Subgroup
Subgroup.instTop
β€”Subgroup.closure_eq_top_of_mclosure_eq_top
mclosure_isSwap
eq_sign_of_surjective_hom πŸ“–mathematicalEquiv.Perm
Units
Int.instMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
signβ€”by_contradiction
isConj_iff_eq
Int.units_eq_one_or
MonoidHom.map_isConj
isConj_swap
List.prod_hom
MonoidHom.instMonoidHomClass
List.eq_replicate_length
List.prod_replicate
one_pow
IsSwap.congr_simp
MonoidHom.ext
sign_prod_list_swap
isConj_swap πŸ“–mathematicalβ€”IsConj
Equiv.Perm
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Equiv.swap
β€”isConj_iff
mul_inv_rev
Equiv.swap_inv
mul_assoc
Equiv.swap_mul_swap_mul_swap
Equiv.swap_comm
mclosure_isSwap πŸ“–mathematicalβ€”Submonoid.closure
Equiv.Perm
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
setOf
IsSwap
Top.top
Submonoid
Submonoid.instTop
β€”nonempty_fintype
top_unique
Subtype.mem
Submonoid.list_prod_mem
Submonoid.subset_closure
mclosure_swap_castSucc_succ πŸ“–mathematicalβ€”Submonoid.closure
Equiv.Perm
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Set.range
Equiv.swap
Top.top
Submonoid
Submonoid.instTop
β€”top_unique
mclosure_isSwap
Finite.of_fintype
Submonoid.closure_le
Submonoid.subset_closure
LE.le.eq_or_lt
Equiv.swap_comm
Equiv.swap_mul_swap_mul_swap
LT.lt.ne
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
Submonoid.instSubmonoidClass
Ne.lt_or_gt
mem_finPairsLT πŸ“–mathematicalβ€”Finset
Finset.instMembership
finPairsLT
β€”β€”
mem_ofSign πŸ“–mathematicalβ€”Equiv.Perm
Finset
Finset.instMembership
ofSign
DFunLike.coe
MonoidHom
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
β€”ofSign.eq_1
Finset.mem_filter
Finset.mem_univ
ofSign_disjUnion πŸ“–mathematicalβ€”Finset.disjUnion
Equiv.Perm
ofSign
Units
Int.instMonoid
Units.instOne
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
ofSign_disjoint
Finset.univ
Equiv.instFintype
β€”Finset.ext
ofSign_disjoint
ofSign_disjoint πŸ“–mathematicalβ€”Disjoint
Finset
Equiv.Perm
Finset.partialOrder
Finset.instOrderBot
ofSign
Units
Int.instMonoid
Units.instOne
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
β€”Finset.disjoint_iff_ne
mem_ofSign
prod_prodExtendRight πŸ“–mathematicalβ€”Equiv.Perm
instMul
instOne
prodExtendRight
Equiv.prodCongrRight
β€”ext
one_apply
mul_apply
prodExtendRight_apply_ne
prodExtendRight_apply_eq
Equiv.prodCongrRight_apply
signAux3_mul_and_swap πŸ“–mathematicalMultiset
Multiset.instMembership
signAux3
Equiv.Perm
instMul
Units
Int.instMonoid
Units.instMul
Pairwise
Equiv.swap
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
Units.instOne
β€”Finite.exists_equiv_fin
Equiv.ext
Equiv.symm_apply_apply
signAux_eq_signAux2
signAux_mul
Equiv.symm_trans_swap_trans
signAux_swap
Equiv.injective
signAux3_symm_trans_trans πŸ“–mathematicalMultiset
Multiset.instMembership
signAux3
Equiv.trans
Equiv.symm
β€”Finite.exists_equiv_fin
signAux_eq_signAux2
Equiv.ext
signAux_eq_signAux2 πŸ“–mathematicalβ€”signAux
Equiv.trans
Equiv.symm
signAux2
β€”Equiv.ext
one_def
Equiv.trans_refl
Equiv.symm_trans_self
signAux_one
signAux2.eq_1
signAux2.eq_2
ne_and_ne_of_swap_mul_apply_ne_self
ext
Equiv.symm_trans_swap_trans
mul_def
Equiv.trans_apply
EquivLike.toEmbeddingLike
Equiv.injective
signAux_mul
signAux_swap
neg_mul
one_mul
neg_neg
signAux_inv πŸ“–mathematicalβ€”signAux
Equiv.Perm
instInv
β€”Finset.prod_nbij
signBijAux_mem
signBijAux_injOn
signBijAux_surj
Equiv.apply_symm_apply
LT.lt.not_ge
mem_finPairsLT
LT.lt.le
signAux_mul πŸ“–mathematicalβ€”signAux
Equiv.Perm
instMul
Units
Int.instMonoid
Units.instMul
β€”signAux_inv
Finset.prod_mul_distrib
Finset.prod_nbij
signBijAux_mem
signBijAux_injOn
signBijAux_surj
mul_apply
Equiv.symm_apply_apply
mul_ite
mul_neg
mul_one
mem_finPairsLT
Ne.lt_or_gt
Equiv.injective
LT.lt.ne
neg_neg
signAux_one πŸ“–mathematicalβ€”signAux
Equiv.Perm
instOne
Units
Int.instMonoid
Units.instOne
β€”Finset.prod_const_one
Finset.prod_congr
LT.lt.not_ge
mem_finPairsLT
signAux_swap πŸ“–mathematicalβ€”signAux
Equiv.swap
Units
Int.instMonoid
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
Units.instOne
β€”Finset.prod_congr
Finset.prod_const
instIsEmptyFalse
le_add_self
Nat.instCanonicallyOrderedAdd
isConj_iff_eq
lt_of_lt_of_le
MonoidHom.map_isConj
signAux_mul
isConj_swap
signBijAux_injOn πŸ“–mathematicalβ€”Set.InjOn
signBijAux
SetLike.coe
Finset
Finset.instSetLike
finPairsLT
β€”LE.le.not_gt
LT.lt.le
mem_finPairsLT
Finset.mem_coe
Equiv.injective
not_le
signBijAux_mem πŸ“–mathematicalFinset
Finset.instMembership
finPairsLT
signBijAuxβ€”mem_finPairsLT
LE.le.lt_of_ne
le_of_not_gt
LT.lt.ne
Equiv.injective
signBijAux_surj πŸ“–mathematicalFinset
Finset.instMembership
finPairsLT
signBijAuxβ€”mem_finPairsLT
Equiv.apply_symm_apply
LE.le.lt_of_ne
le_of_not_gt
Equiv.injective
LE.le.not_gt
LT.lt.le
sign_abs πŸ“–mathematicalβ€”abs
instLatticeInt
Int.instAddGroup
Units.val
Int.instMonoid
DFunLike.coe
MonoidHom
Equiv.Perm
Units
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
β€”Int.abs_eq_natAbs
Int.units_natAbs
Nat.cast_one
sign_bij πŸ“–mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
β€”EquivLike.toEmbeddingLike
sign_subtypePerm
sign_eq_sign_of_equiv
Equiv.injective
sign_eq_sign_of_equiv πŸ“–mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.Perm
MonoidHom
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
β€”Equiv.ext
Equiv.apply_symm_apply
sign_symm_trans_trans
sign_extendDomain πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
extendDomain
β€”sign_subtypeCongr
sign_permCongr
sign_refl
mul_one
sign_inv πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
instInv
β€”map_inv
MonoidHom.instMonoidHomClass
Int.units_inv_eq_self
sign_mul πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
instMul
Units.instMul
β€”map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
sign_ofSubtype πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
ofSubtype
Subtype.fintype
β€”sign_extendDomain
sign_one πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
instOne
Units.instOne
β€”map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
sign_permCongr πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.permCongr
β€”sign_eq_sign_of_equiv
Equiv.symm_apply_apply
sign_prodCongrLeft πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
instFintypeProd
Equiv.prodCongrLeft
Finset.prod
CommGroup.toCommMonoid
Units.instCommGroupUnits
Int.instCommMonoid
Finset.univ
β€”sign_eq_sign_of_equiv
sign_prodCongrRight
sign_prodCongrRight πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
instFintypeProd
Equiv.prodCongrRight
Finset.prod
CommGroup.toCommMonoid
Units.instCommGroupUnits
Int.instCommMonoid
Finset.univ
β€”Finite.exists_univ_list
Finite.of_fintype
eq_top_iff
List.mem_toFinset
prod_prodExtendRight
map_list_prod
MonoidHom.instMonoidHomClass
List.prod_toFinset
sign_prodExtendRight
sign_prodExtendRight πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
instFintypeProd
prodExtendRight
β€”sign_bij
eq_of_prodExtendRight_ne
prodExtendRight_apply_eq
sign_prod_list_swap πŸ“–mathematicalIsSwapDFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
instMul
instOne
Monoid.toNatPow
Units.instMonoid
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
Units.instOne
β€”IsSwap.sign_eq
List.prod_replicate
List.prod_hom
MonoidHom.instMonoidHomClass
sign_refl πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
Equiv.refl
Units.instOne
β€”map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
sign_subtypeCongr πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
subtypeCongr
Units.instMul
Subtype.fintype
β€”sign_permCongr
sign_sumCongr
sign_subtypePerm πŸ“–mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
Subtype.fintype
subtypePerm
β€”IsSwap.of_subtype_isSwap
List.prod_hom
MonoidHom.instMonoidHomClass
ofSubtype_subtypePerm
sign_prod_list_swap
sign_sumCongr πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
instFintypeSum
sumCongr
Units.instMul
β€”swap_induction_on
Finite.of_fintype
sumCongr_one
sign_one
one_mul
sumCongr_mul
sign_mul
sumCongr_swap_one
sign_swap
Sum.inl_injective
sumCongr_one_swap
Sum.inr_injective
mul_one
sign_surjective πŸ“–mathematicalβ€”Equiv.Perm
Units
Int.instMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
β€”Int.units_eq_one_or
sign_one
exists_pair_ne
sign_swap
sign_swap πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
Equiv.swap
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
Units.instOne
β€”Finite.of_fintype
Finset.mem_univ
signAux3_mul_and_swap
sign_swap' πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
Equiv.swap
Units.instOne
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
β€”Equiv.swap_self
sign_refl
sign_swap
sign_symm πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
Equiv.symm
β€”sign_inv
sign_symm_trans_trans πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
Equiv.trans
Equiv.symm
β€”signAux3_symm_trans_trans
Finite.of_fintype
Finset.mem_univ
sign_trans πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
Equiv.trans
Units.instMul
β€”mul_def
sign_mul
sign_trans_trans_symm πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
Equiv.trans
Equiv.symm
β€”sign_symm_trans_trans
swap_induction_on πŸ“–β€”Equiv.Perm
instOne
instMul
Equiv.swap
β€”β€”nonempty_fintype
swap_induction_on' πŸ“–β€”Equiv.Perm
instOne
instMul
Equiv.swap
β€”β€”swap_induction_on
inv_inv
viaFintypeEmbedding_sign πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Units.instMulOneClass
MonoidHom.instFunLike
sign
viaFintypeEmbedding
β€”sign_extendDomain

Equiv.Perm.IsSwap

Theorems

NameKindAssumesProvesValidatesDepends On
sign_eq πŸ“–mathematicalEquiv.Perm.IsSwapDFunLike.coe
MonoidHom
Equiv.Perm
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
Units.instMulOneClass
MonoidHom.instFunLike
Equiv.Perm.sign
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
Units.instOne
β€”Equiv.Perm.sign_swap

---

← Back to Index