π Source: Mathlib/GroupTheory/Perm/Sign.lean
finPairsLT
instDecidableRelROfFintype
modSwap
ofSign
sign
signAux
signAux2
signAux3
signBijAux
swapFactors
swapFactorsAux
truncSwapFactors
sign_eq
closure_isSwap
eq_sign_of_surjective_hom
isConj_swap
mclosure_isSwap
mclosure_swap_castSucc_succ
mem_finPairsLT
mem_ofSign
ofSign_disjUnion
ofSign_disjoint
prod_prodExtendRight
signAux3_mul_and_swap
signAux3_symm_trans_trans
signAux_eq_signAux2
signAux_inv
signAux_mul
signAux_one
signAux_swap
signBijAux_injOn
signBijAux_mem
signBijAux_surj
sign_abs
sign_bij
sign_eq_sign_of_equiv
sign_extendDomain
sign_inv
sign_mul
sign_ofSubtype
sign_one
sign_permCongr
sign_prodCongrLeft
sign_prodCongrRight
sign_prodExtendRight
sign_prod_list_swap
sign_refl
sign_subtypeCongr
sign_subtypePerm
sign_sumCongr
sign_surjective
sign_swap
sign_swap'
sign_symm
sign_symm_trans_trans
sign_trans
sign_trans_trans_symm
swap_induction_on
swap_induction_on'
viaFintypeEmbedding_sign
Matrix.adjp_apply
Fin.sign_cycleIcc_of_eq
AlternatingMap.domCoprod.summand_mk''
Matrix.det_apply
ContinuousMultilinearMap.alternatization_apply_apply
AlternatingMap.map_perm
sign_of_cycleType
Matrix.det_permute
Fin.sign_cycleRange
sign_eq_prod_prod_Ioi
prod_Ioi_comp_eq_sign_mul_prod
alternatingGroup.normalClosure_swap_mul_swap_five
sign_of_cycleType_eq_replicate
decomposeFin.symm_sign
AlternatingMap.map_congr_perm
Fin.sign_cycleIcc_of_ge
MultilinearMap.domCoprod_alternization_coe
sign_eq_prod_prod_Iio
Matrix.det_permutation
NumberField.InfinitePlace.ComplexEmbedding.conjugate_sign
Fin.sign_cycleIcc_of_le
mem_alternatingGroup
Matrix.det_reindex
sign_of_pow_two_eq_one
MultilinearMap.alternatization_apply
decomposeOption_symm_sign
ContinuousMultilinearMap.alternatization_apply_toContinuousMultilinearMap
Matrix.det_mul_aux
Matrix.det_permute'
MultilinearMap.alternatization_coe
sign_finRotate
IsCycle.sign
IsThreeCycle.sign
AlternatingMap.domDomCongr_perm
IsSwap.sign_eq
Matrix.det_apply'
sign_of_cycleType'
exteriorPower.toTensorPower_apply_ΞΉMulti
prod_Iio_comp_eq_sign_mul_prod
alternatingGroup_eq_sign_ker
Equiv.optionCongr_sign
MultilinearMap.alternatization_def
OnCycleFactors.sign_kerParam_apply_apply
Subgroup.closure
Equiv.Perm
permGroup
setOf
IsSwap
Top.top
Subgroup
Subgroup.instTop
Subgroup.closure_eq_top_of_mclosure_eq_top
Units
Int.instMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Units.instMulOneClass
MonoidHom.instFunLike
by_contradiction
isConj_iff_eq
Int.units_eq_one_or
MonoidHom.map_isConj
List.prod_hom
MonoidHom.instMonoidHomClass
List.eq_replicate_length
List.prod_replicate
one_pow
IsSwap.congr_simp
MonoidHom.ext
IsConj
Equiv.swap
isConj_iff
mul_inv_rev
Equiv.swap_inv
mul_assoc
Equiv.swap_mul_swap_mul_swap
Equiv.swap_comm
Submonoid.closure
Submonoid
Submonoid.instTop
nonempty_fintype
top_unique
Subtype.mem
Submonoid.list_prod_mem
Submonoid.subset_closure
Set.range
Finite.of_fintype
Submonoid.closure_le
LE.le.eq_or_lt
LT.lt.ne
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
Submonoid.instSubmonoidClass
Ne.lt_or_gt
Finset
Finset.instMembership
ofSign.eq_1
Finset.mem_filter
Finset.mem_univ
Finset.disjUnion
Units.instOne
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
Finset.univ
Equiv.instFintype
Finset.ext
Disjoint
Finset.partialOrder
Finset.instOrderBot
Finset.disjoint_iff_ne
instMul
instOne
prodExtendRight
Equiv.prodCongrRight
ext
one_apply
mul_apply
prodExtendRight_apply_ne
prodExtendRight_apply_eq
Equiv.prodCongrRight_apply
Multiset
Multiset.instMembership
Units.instMul
Pairwise
Finite.exists_equiv_fin
Equiv.ext
Equiv.symm_apply_apply
Equiv.symm_trans_swap_trans
Equiv.injective
Equiv.trans
Equiv.symm
one_def
Equiv.trans_refl
Equiv.symm_trans_self
signAux2.eq_1
signAux2.eq_2
ne_and_ne_of_swap_mul_apply_ne_self
mul_def
Equiv.trans_apply
EquivLike.toEmbeddingLike
neg_mul
one_mul
neg_neg
instInv
Finset.prod_nbij
Equiv.apply_symm_apply
LT.lt.not_ge
LT.lt.le
Finset.prod_mul_distrib
mul_ite
mul_neg
mul_one
Finset.prod_const_one
Finset.prod_congr
Finset.prod_const
instIsEmptyFalse
le_add_self
Nat.instCanonicallyOrderedAdd
lt_of_lt_of_le
Set.InjOn
SetLike.coe
Finset.instSetLike
LE.le.not_gt
Finset.mem_coe
not_le
LE.le.lt_of_ne
le_of_not_gt
abs
instLatticeInt
Int.instAddGroup
Units.val
Int.abs_eq_natAbs
Int.units_natAbs
Nat.cast_one
EquivLike.toFunLike
Equiv.instEquivLike
Equiv
extendDomain
map_inv
Int.units_inv_eq_self
map_mul
MonoidHomClass.toMulHomClass
ofSubtype
Subtype.fintype
map_one
MonoidHomClass.toOneHomClass
Equiv.permCongr
instFintypeProd
Equiv.prodCongrLeft
Finset.prod
CommGroup.toCommMonoid
Units.instCommGroupUnits
Int.instCommMonoid
Finite.exists_univ_list
eq_top_iff
List.mem_toFinset
map_list_prod
List.prod_toFinset
eq_of_prodExtendRight_ne
Monoid.toNatPow
Units.instMonoid
Equiv.refl
subtypeCongr
subtypePerm
IsSwap.of_subtype_isSwap
ofSubtype_subtypePerm
instFintypeSum
sumCongr
sumCongr_one
sumCongr_mul
sumCongr_swap_one
Sum.inl_injective
sumCongr_one_swap
Sum.inr_injective
exists_pair_ne
Equiv.swap_self
inv_inv
viaFintypeEmbedding
Equiv.Perm.IsSwap
Equiv.Perm.permGroup
Equiv.Perm.sign
Equiv.Perm.sign_swap
---
β Back to Index