| Name | Category | Theorems |
Pair 📖 | CompData | 3 mathmath: summand_smul_def', summand_smul_def, rcons_injective
|
Transversal 📖 | CompData | 1 mathmath: transversal_nonempty
|
baseAction 📖 | CompOp | 4 mathmath: base_smul_eq_smul, base_smul_def', prod_base_smul, instFaithfulSMul_2
|
cons 📖 | CompOp | 4 mathmath: prod_cons, cons_head, cons_eq_smul, cons_toList
|
consRecOn 📖 | CompOp | — |
empty 📖 | CompOp | 4 mathmath: prod_smul_empty, prod_empty, empty_head, empty_toList
|
equiv 📖 | CompOp | — |
equivPair 📖 | CompOp | 2 mathmath: summand_smul_def', summand_smul_def
|
head 📖 | CompOp | 6 mathmath: base_smul_def, base_smul_def', cons_head, ext_iff, empty_head, cons_toList
|
instInhabited 📖 | CompOp | — |
instInhabitedPair 📖 | CompOp | — |
mulAction 📖 | CompOp | 8 mathmath: base_smul_def, base_smul_eq_smul, instFaithfulSMul, prod_smul_empty, cons_eq_smul, of_smul_eq_smul, prod_smul, summand_smul_def
|
prod 📖 | CompOp | 8 mathmath: prod_cons, prod_summand_smul, prod_base_smul, prod_smul_empty, Monoid.PushoutI.Reduced.exists_normalWord_prod_eq, prod_empty, prod_injective, prod_smul
|
rcons 📖 | CompOp | 1 mathmath: rcons_injective
|
summandAction 📖 | CompOp | 4 mathmath: prod_summand_smul, summand_smul_def', of_smul_eq_smul, instFaithfulSMul_1
|
toWord 📖 | CompOp | 6 mathmath: base_smul_def, base_smul_def', Monoid.PushoutI.Reduced.exists_normalWord_prod_eq, ext_iff, empty_toList, cons_toList
|