Documentation Verification Report

Basic

πŸ“ Source: Mathlib/GroupTheory/QuotientGroup/Basic.lean

Statistics

MetricCount
DefinitionsrestrictHomKerEquiv, restrictHomKerEquiv, comapMk'OrderIso, equivQuotientAddSubgroupOfOfEq, equivQuotientZSMulOfEquiv, homQuotientZSMulOfHom, kerLift, quotientAddEquivOfEq, quotientBot, quotientInfEquivSumNormalQuotient, quotientInfEquivSumNormalizerQuotient, quotientKerEquivOfRightInverse, quotientKerEquivOfSurjective, quotientKerEquivRange, quotientMapAddSubgroupOfOfLe, quotientQuotientEquivQuotient, quotientQuotientEquivQuotientAux, rangeKerLift, comapMk'OrderIso, equivQuotientSubgroupOfOfEq, equivQuotientZPowOfEquiv, homQuotientZPowOfHom, kerLift, quotientBot, quotientInfEquivProdNormalQuotient, quotientInfEquivProdNormalizerQuotient, quotientKerEquivOfRightInverse, quotientKerEquivOfSurjective, quotientKerEquivRange, quotientMapSubgroupOfOfLe, quotientMulEquivOfEq, quotientQuotientEquivQuotient, quotientQuotientEquivQuotientAux, rangeKerLift
34
Theoremscomap_quotient_mk, restrictHomKerEquiv_apply_coe, restrictHomKerEquiv_symm_coe_apply, addSubgroup_eq_top_of_subsingleton, comap_comap_center, comap_map_mk', equivQuotientZSMulOfEquiv_refl, equivQuotientZSMulOfEquiv_symm, equivQuotientZSMulOfEquiv_trans, homQuotientZSMulOfHom_comp, homQuotientZSMulOfHom_comp_of_rightInverse, homQuotientZSMulOfHom_id, kerLift_injective, kerLift_mk, kerLift_mk', le_comap_mk', map_normal, mk_int_mul, mk_nat_mul, mk_sum, quotientAddEquivOfEq_mk, quotientBot_apply, quotientBot_symm_apply, quotientKerEquivOfRightInverse_apply, quotientKerEquivOfRightInverse_symm_apply, quotientMapAddSubgroupOfOfLe_mk, quotientQuotientEquivQuotientAux_mk, quotientQuotientEquivQuotientAux_mk_mk, rangeKerLift_injective, rangeKerLift_surjective, sound, strictMono_comap_prod_map, subsingleton_quotient_top, comap_comap_center, comap_map_mk', equivQuotientZPowOfEquiv_refl, equivQuotientZPowOfEquiv_symm, equivQuotientZPowOfEquiv_trans, homQuotientZPowOfHom_comp, homQuotientZPowOfHom_comp_of_rightInverse, homQuotientZPowOfHom_id, kerLift_injective, kerLift_mk, kerLift_mk', le_comap_mk', map_normal, mk_prod, quotientBot_apply, quotientBot_symm_apply, quotientKerEquivOfRightInverse_apply, quotientKerEquivOfRightInverse_symm_apply, quotientMapSubgroupOfOfLe_mk, quotientMulEquivOfEq_mk, quotientQuotientEquivQuotientAux_mk, quotientQuotientEquivQuotientAux_mk_mk, rangeKerLift_injective, rangeKerLift_surjective, sound, strictMono_comap_prod_map, subgroup_eq_top_of_subsingleton, subsingleton_quotient_top, comap_quotient_mk
62
Total96

AddMonoidHom

Definitions

NameCategoryTheorems
restrictHomKerEquiv πŸ“–CompOpβ€”

AddSubgroup.Characteristic

Theorems

NameKindAssumesProvesValidatesDepends On
comap_quotient_mk πŸ“–mathematicalβ€”AddSubgroup.Characteristic
AddSubgroup.comap
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
QuotientAddGroup.Quotient.addGroup
AddSubgroup.normal_of_characteristic
QuotientAddGroup.mk'
β€”AddSubgroup.normal_of_characteristic
AddSubgroup.characteristic_iff_comap_eq
AddSubgroup.characteristic_iff_map_eq

MonoidHom

Definitions

NameCategoryTheorems
restrictHomKerEquiv πŸ“–CompOp
2 mathmath: restrictHomKerEquiv_apply_coe, restrictHomKerEquiv_symm_coe_apply

Theorems

NameKindAssumesProvesValidatesDepends On
restrictHomKerEquiv_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
QuotientGroup.Quotient.group
CommGroup.toGroup
instFunLike
MulEquiv
CommMonoid.toMonoid
CommGroup.toCommMonoid
instCommGroup
SetLike.instMembership
Subgroup.instSetLike
ker
SubmonoidClass.toMulOneClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
Subgroup.toGroup
restrictHom
Subgroup.mul
mul
EquivLike.toFunLike
MulEquiv.instEquivLike
restrictHomKerEquiv
β€”SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
restrictHomKerEquiv_symm_coe_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommMonoid.toMonoid
CommGroup.toCommMonoid
instFunLike
Subgroup
CommGroup.toGroup
instCommGroup
SetLike.instMembership
Subgroup.instSetLike
ker
SubmonoidClass.toMulOneClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
Subgroup.toGroup
restrictHom
MulEquiv
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
QuotientGroup.Quotient.group
mul
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
restrictHomKerEquiv
β€”SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass

QuotientAddGroup

Definitions

NameCategoryTheorems
comapMk'OrderIso πŸ“–CompOpβ€”
equivQuotientAddSubgroupOfOfEq πŸ“–CompOpβ€”
equivQuotientZSMulOfEquiv πŸ“–CompOp
3 mathmath: equivQuotientZSMulOfEquiv_symm, equivQuotientZSMulOfEquiv_trans, equivQuotientZSMulOfEquiv_refl
homQuotientZSMulOfHom πŸ“–CompOp
3 mathmath: homQuotientZSMulOfHom_comp_of_rightInverse, homQuotientZSMulOfHom_comp, homQuotientZSMulOfHom_id
kerLift πŸ“–CompOp
5 mathmath: kerLift_mk, quotientBot_apply, quotientKerEquivOfRightInverse_apply, kerLift_mk', kerLift_injective
quotientAddEquivOfEq πŸ“–CompOp
1 mathmath: quotientAddEquivOfEq_mk
quotientBot πŸ“–CompOp
2 mathmath: quotientBot_apply, quotientBot_symm_apply
quotientInfEquivSumNormalQuotient πŸ“–CompOpβ€”
quotientInfEquivSumNormalizerQuotient πŸ“–CompOpβ€”
quotientKerEquivOfRightInverse πŸ“–CompOp
2 mathmath: quotientKerEquivOfRightInverse_symm_apply, quotientKerEquivOfRightInverse_apply
quotientKerEquivOfSurjective πŸ“–CompOpβ€”
quotientKerEquivRange πŸ“–CompOpβ€”
quotientMapAddSubgroupOfOfLe πŸ“–CompOp
1 mathmath: quotientMapAddSubgroupOfOfLe_mk
quotientQuotientEquivQuotient πŸ“–CompOpβ€”
quotientQuotientEquivQuotientAux πŸ“–CompOp
2 mathmath: quotientQuotientEquivQuotientAux_mk, quotientQuotientEquivQuotientAux_mk_mk
rangeKerLift πŸ“–CompOp
2 mathmath: rangeKerLift_injective, rangeKerLift_surjective

Theorems

NameKindAssumesProvesValidatesDepends On
addSubgroup_eq_top_of_subsingleton πŸ“–mathematicalβ€”Top.top
AddSubgroup
AddSubgroup.instTop
β€”top_unique
eq
zero_add
neg_zero
comap_comap_center πŸ“–mathematicalβ€”AddSubgroup.comap
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Quotient.addGroup
mk'
AddSubgroup.center
AddSubgroup.normal_comap
β€”AddSubgroup.ext
AddSubgroup.normal_comap
AddSubgroup.mem_comap
AddSubgroup.mem_center_iff
eq_iff_sub_mem
comap_map_mk' πŸ“–mathematicalβ€”AddSubgroup.comap
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Quotient.addGroup
mk'
AddSubgroup.map
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
AddSubgroup.instCompleteLattice
β€”AddSubgroup.comap_map_eq
ker_mk'
sup_comm
equivQuotientZSMulOfEquiv_refl πŸ“–mathematicalβ€”AddEquiv.refl
HasQuotient.Quotient
AddSubgroup
AddCommGroup.toAddGroup
instHasQuotientAddSubgroup
AddMonoidHom.range
zsmulAddGroupHom
AddCommGroup.toDivisionAddCommMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddSubgroup.normal_of_comm
equivQuotientZSMulOfEquiv
β€”AddEquiv.ext
AddSubgroup.normal_of_comm
Quotient.out_eq'
equivQuotientZSMulOfEquiv_symm πŸ“–mathematicalβ€”AddEquiv.symm
HasQuotient.Quotient
AddSubgroup
AddCommGroup.toAddGroup
instHasQuotientAddSubgroup
AddMonoidHom.range
zsmulAddGroupHom
AddCommGroup.toDivisionAddCommMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddSubgroup.normal_of_comm
equivQuotientZSMulOfEquiv
β€”AddSubgroup.normal_of_comm
equivQuotientZSMulOfEquiv_trans πŸ“–mathematicalβ€”AddEquiv.trans
HasQuotient.Quotient
AddSubgroup
AddCommGroup.toAddGroup
instHasQuotientAddSubgroup
AddMonoidHom.range
zsmulAddGroupHom
AddCommGroup.toDivisionAddCommMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddSubgroup.normal_of_comm
equivQuotientZSMulOfEquiv
β€”AddEquiv.ext
AddSubgroup.normal_of_comm
Quotient.out_eq'
homQuotientZSMulOfHom_comp πŸ“–mathematicalβ€”homQuotientZSMulOfHom
AddMonoidHom.comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddMonoidHom.range
zsmulAddGroupHom
AddCommGroup.toDivisionAddCommMonoid
Quotient.addGroup
AddSubgroup.normal_of_comm
β€”addMonoidHom_ext
AddSubgroup.normal_of_comm
homQuotientZSMulOfHom_comp_of_rightInverse πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom.instFunLike
AddMonoidHom.comp
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddMonoidHom.range
zsmulAddGroupHom
AddCommGroup.toDivisionAddCommMonoid
Quotient.addGroup
AddSubgroup.normal_of_comm
homQuotientZSMulOfHom
AddMonoidHom.id
β€”addMonoidHom_ext
AddSubgroup.normal_of_comm
AddMonoidHom.ext
homQuotientZSMulOfHom_id πŸ“–mathematicalβ€”homQuotientZSMulOfHom
AddMonoidHom.id
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddMonoidHom.range
zsmulAddGroupHom
AddCommGroup.toDivisionAddCommMonoid
Quotient.addGroup
AddSubgroup.normal_of_comm
β€”addMonoidHom_ext
AddSubgroup.normal_of_comm
kerLift_injective πŸ“–mathematicalβ€”HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddMonoidHom.ker
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Quotient.addGroup
AddMonoidHom.normal_ker
AddMonoidHom.instFunLike
kerLift
β€”Quotient.inductionOnβ‚‚'
AddMonoidHom.normal_ker
Quotient.sound'
leftRel_apply
AddMonoidHom.mem_ker
AddMonoidHom.map_add
AddMonoidHom.map_neg
neg_add_cancel
kerLift_mk πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddMonoidHom.ker
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddZeroClass.toAddZero
Quotient.addGroup
AddMonoidHom.normal_ker
AddMonoidHom.instFunLike
kerLift
β€”AddMonoidHom.normal_ker
kerLift_mk' πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddMonoidHom.ker
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddZeroClass.toAddZero
Quotient.addGroup
AddMonoidHom.normal_ker
AddMonoidHom.instFunLike
kerLift
β€”β€”
le_comap_mk' πŸ“–mathematicalβ€”AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddSubgroup.comap
HasQuotient.Quotient
instHasQuotientAddSubgroup
Quotient.addGroup
mk'
β€”ker_mk'
AddSubgroup.comap_mono
bot_le
map_normal πŸ“–mathematicalβ€”AddSubgroup.Normal
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Quotient.addGroup
AddSubgroup.map
mk'
β€”AddSubgroup.Normal.map
mk_surjective
mk_int_mul πŸ“–mathematicalβ€”AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
AddGroupWithOne.toIntCast
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Quotient.addGroup
β€”zsmul_eq_mul
mk_zsmul
mk_nat_mul πŸ“–mathematicalβ€”AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
β€”nsmul_eq_mul
mk_nsmul
mk_sum πŸ“–mathematicalβ€”AddCommGroup.toAddGroup
Finset.sum
AddCommGroup.toAddCommMonoid
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Quotient.addCommGroup
β€”map_sum
AddSubgroup.normal_of_comm
AddMonoidHom.instAddMonoidHomClass
quotientAddEquivOfEq_mk πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
EquivLike.toFunLike
AddEquiv.instEquivLike
quotientAddEquivOfEq
β€”β€”
quotientBot_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Bot.bot
AddSubgroup.instBot
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddSubgroup.normal_bot
EquivLike.toFunLike
AddEquiv.instEquivLike
quotientBot
AddMonoidHom
AddMonoidHom.id
AddMonoidHom.instFunLike
kerLift
β€”AddSubgroup.normal_bot
quotientBot_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Bot.bot
AddSubgroup.instBot
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddSubgroup.normal_bot
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
quotientBot
β€”AddSubgroup.normal_bot
quotientKerEquivOfRightInverse_apply πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoidHom.instFunLike
AddEquiv
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddMonoidHom.ker
AddZero.toAdd
Quotient.addGroup
AddMonoidHom.normal_ker
EquivLike.toFunLike
AddEquiv.instEquivLike
quotientKerEquivOfRightInverse
kerLift
β€”AddMonoidHom.normal_ker
quotientKerEquivOfRightInverse_symm_apply πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoidHom.instFunLike
AddEquiv
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddMonoidHom.ker
AddZero.toAdd
Quotient.addGroup
AddMonoidHom.normal_ker
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
quotientKerEquivOfRightInverse
β€”AddMonoidHom.normal_ker
quotientMapAddSubgroupOfOfLe_mk πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
DFunLike.coe
AddMonoidHom
HasQuotient.Quotient
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.toAddGroup
instHasQuotientAddSubgroup
AddSubgroup.addSubgroupOf
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddMonoidHom.instFunLike
quotientMapAddSubgroupOfOfLe
AddSubgroup.inclusion
β€”β€”
quotientQuotientEquivQuotientAux_mk πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
DFunLike.coe
AddMonoidHom
HasQuotient.Quotient
instHasQuotientAddSubgroup
Quotient.addGroup
AddSubgroup.map
mk'
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
map_normal
AddMonoidHom.instFunLike
quotientQuotientEquivQuotientAux
map
AddMonoidHom.id
β€”lift_mk'
map_normal
quotientQuotientEquivQuotientAux_mk_mk πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
DFunLike.coe
AddMonoidHom
HasQuotient.Quotient
instHasQuotientAddSubgroup
Quotient.addGroup
AddSubgroup.map
mk'
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
map_normal
AddMonoidHom.instFunLike
quotientQuotientEquivQuotientAux
β€”lift_mk'
map_normal
rangeKerLift_injective πŸ“–mathematicalβ€”HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddMonoidHom.ker
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SetLike.instMembership
AddSubgroup.instSetLike
AddMonoidHom.range
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Quotient.addGroup
AddMonoidHom.normal_ker
AddSubgroup.toAddGroup
AddMonoidHom.instFunLike
rangeKerLift
β€”Quotient.inductionOnβ‚‚'
AddMonoidHom.normal_ker
Quotient.sound'
leftRel_apply
AddMonoidHom.ker_rangeRestrict
AddMonoidHom.mem_ker
AddMonoidHom.map_add
AddMonoidHom.map_neg
neg_add_cancel
rangeKerLift_surjective πŸ“–mathematicalβ€”HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddMonoidHom.ker
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SetLike.instMembership
AddSubgroup.instSetLike
AddMonoidHom.range
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Quotient.addGroup
AddMonoidHom.normal_ker
AddSubgroup.toAddGroup
AddMonoidHom.instFunLike
rangeKerLift
β€”AddMonoidHom.normal_ker
sound πŸ“–mathematicalβ€”HVAdd.hVAdd
AddOpposite
AddSubgroup
AddOpposite.instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.op
Set
instHVAdd
Set.vaddSet
AddSubgroup.instVAdd
Set.preimage
HasQuotient.Quotient
instHasQuotientAddSubgroup
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddMonoidHom.instFunLike
mk'
β€”Set.ext
Set.mem_vadd_set_iff_neg_vadd_mem
Set.mem_preimage
strictMono_comap_prod_map πŸ“–mathematicalβ€”StrictMono
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.toAddGroup
HasQuotient.Quotient
instHasQuotientAddSubgroup
Quotient.addGroup
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
Prod.instPreorder
AddSubgroup.comap
AddSubgroup.subtype
AddSubgroup.map
mk'
β€”strictMono_comap_prod_image
subsingleton_quotient_top πŸ“–mathematicalβ€”HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Top.top
AddSubgroup.instTop
β€”subsingleton_iff

QuotientGroup

Definitions

NameCategoryTheorems
comapMk'OrderIso πŸ“–CompOpβ€”
equivQuotientSubgroupOfOfEq πŸ“–CompOpβ€”
equivQuotientZPowOfEquiv πŸ“–CompOp
3 mathmath: equivQuotientZPowOfEquiv_trans, equivQuotientZPowOfEquiv_refl, equivQuotientZPowOfEquiv_symm
homQuotientZPowOfHom πŸ“–CompOp
3 mathmath: homQuotientZPowOfHom_id, homQuotientZPowOfHom_comp_of_rightInverse, homQuotientZPowOfHom_comp
kerLift πŸ“–CompOp
5 mathmath: kerLift_mk, kerLift_mk', quotientKerEquivOfRightInverse_apply, kerLift_injective, quotientBot_apply
quotientBot πŸ“–CompOp
2 mathmath: quotientBot_apply, quotientBot_symm_apply
quotientInfEquivProdNormalQuotient πŸ“–CompOpβ€”
quotientInfEquivProdNormalizerQuotient πŸ“–CompOpβ€”
quotientKerEquivOfRightInverse πŸ“–CompOp
2 mathmath: quotientKerEquivOfRightInverse_apply, quotientKerEquivOfRightInverse_symm_apply
quotientKerEquivOfSurjective πŸ“–CompOpβ€”
quotientKerEquivRange πŸ“–CompOp
4 mathmath: Submodule.unitsQuotEquivRelPic_symm_apply, ClassGroup.equivPic_symm_apply, ClassGroup.equivPic_apply, Submodule.unitsQuotEquivRelPic_apply_coe
quotientMapSubgroupOfOfLe πŸ“–CompOp
1 mathmath: quotientMapSubgroupOfOfLe_mk
quotientMulEquivOfEq πŸ“–CompOp
1 mathmath: quotientMulEquivOfEq_mk
quotientQuotientEquivQuotient πŸ“–CompOpβ€”
quotientQuotientEquivQuotientAux πŸ“–CompOp
2 mathmath: quotientQuotientEquivQuotientAux_mk, quotientQuotientEquivQuotientAux_mk_mk
rangeKerLift πŸ“–CompOp
2 mathmath: rangeKerLift_injective, rangeKerLift_surjective

Theorems

NameKindAssumesProvesValidatesDepends On
comap_comap_center πŸ“–mathematicalβ€”Subgroup.comap
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.group
mk'
Subgroup.center
Subgroup.normal_comap
β€”Subgroup.ext
Subgroup.normal_comap
comap_map_mk' πŸ“–mathematicalβ€”Subgroup.comap
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.group
mk'
Subgroup.map
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Subgroup.instCompleteLattice
β€”Subgroup.comap_map_eq
ker_mk'
sup_comm
equivQuotientZPowOfEquiv_refl πŸ“–mathematicalβ€”MulEquiv.refl
HasQuotient.Quotient
Subgroup
CommGroup.toGroup
instHasQuotientSubgroup
MonoidHom.range
zpowGroupHom
CommGroup.toDivisionCommMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
Subgroup.normal_of_comm
equivQuotientZPowOfEquiv
β€”MulEquiv.ext
Subgroup.normal_of_comm
Quotient.out_eq'
equivQuotientZPowOfEquiv_symm πŸ“–mathematicalβ€”MulEquiv.symm
HasQuotient.Quotient
Subgroup
CommGroup.toGroup
instHasQuotientSubgroup
MonoidHom.range
zpowGroupHom
CommGroup.toDivisionCommMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
Subgroup.normal_of_comm
equivQuotientZPowOfEquiv
β€”Subgroup.normal_of_comm
equivQuotientZPowOfEquiv_trans πŸ“–mathematicalβ€”MulEquiv.trans
HasQuotient.Quotient
Subgroup
CommGroup.toGroup
instHasQuotientSubgroup
MonoidHom.range
zpowGroupHom
CommGroup.toDivisionCommMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
Subgroup.normal_of_comm
equivQuotientZPowOfEquiv
β€”MulEquiv.ext
Subgroup.normal_of_comm
Quotient.out_eq'
homQuotientZPowOfHom_comp πŸ“–mathematicalβ€”homQuotientZPowOfHom
MonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MonoidHom.range
zpowGroupHom
CommGroup.toDivisionCommMonoid
Quotient.group
Subgroup.normal_of_comm
β€”monoidHom_ext
Subgroup.normal_of_comm
homQuotientZPowOfHom_comp_of_rightInverse πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MonoidHom.instFunLike
MonoidHom.comp
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MonoidHom.range
zpowGroupHom
CommGroup.toDivisionCommMonoid
Quotient.group
Subgroup.normal_of_comm
homQuotientZPowOfHom
MonoidHom.id
β€”monoidHom_ext
Subgroup.normal_of_comm
MonoidHom.ext
homQuotientZPowOfHom_id πŸ“–mathematicalβ€”homQuotientZPowOfHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MonoidHom.range
zpowGroupHom
CommGroup.toDivisionCommMonoid
Quotient.group
Subgroup.normal_of_comm
β€”monoidHom_ext
Subgroup.normal_of_comm
kerLift_injective πŸ“–mathematicalβ€”HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Quotient.group
MonoidHom.normal_ker
MonoidHom.instFunLike
kerLift
β€”Quotient.inductionOnβ‚‚'
MonoidHom.normal_ker
Quotient.sound'
leftRel_apply
MonoidHom.mem_ker
MonoidHom.map_mul
MonoidHom.map_inv
inv_mul_cancel
kerLift_mk πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulOneClass.toMulOne
Quotient.group
MonoidHom.normal_ker
MonoidHom.instFunLike
kerLift
β€”MonoidHom.normal_ker
kerLift_mk' πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulOneClass.toMulOne
Quotient.group
MonoidHom.normal_ker
MonoidHom.instFunLike
kerLift
β€”β€”
le_comap_mk' πŸ“–mathematicalβ€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.comap
HasQuotient.Quotient
instHasQuotientSubgroup
Quotient.group
mk'
β€”ker_mk'
Subgroup.comap_mono
bot_le
map_normal πŸ“–mathematicalβ€”Subgroup.Normal
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.group
Subgroup.map
mk'
β€”Subgroup.Normal.map
mk_surjective
mk_prod πŸ“–mathematicalβ€”CommGroup.toGroup
Finset.prod
CommGroup.toCommMonoid
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.commGroup
β€”map_prod
Subgroup.normal_of_comm
MonoidHom.instMonoidHomClass
quotientBot_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Bot.bot
Subgroup.instBot
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
Subgroup.normal_bot
EquivLike.toFunLike
MulEquiv.instEquivLike
quotientBot
MonoidHom
MonoidHom.id
MonoidHom.instFunLike
kerLift
β€”Subgroup.normal_bot
quotientBot_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Bot.bot
Subgroup.instBot
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
Subgroup.normal_bot
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
quotientBot
β€”Subgroup.normal_bot
quotientKerEquivOfRightInverse_apply πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
MulEquiv
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MonoidHom.ker
MulOne.toMul
Quotient.group
MonoidHom.normal_ker
EquivLike.toFunLike
MulEquiv.instEquivLike
quotientKerEquivOfRightInverse
kerLift
β€”MonoidHom.normal_ker
quotientKerEquivOfRightInverse_symm_apply πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
MulEquiv
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MonoidHom.ker
MulOne.toMul
Quotient.group
MonoidHom.normal_ker
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
quotientKerEquivOfRightInverse
β€”MonoidHom.normal_ker
quotientMapSubgroupOfOfLe_mk πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
DFunLike.coe
MonoidHom
HasQuotient.Quotient
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
instHasQuotientSubgroup
Subgroup.subgroupOf
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
MonoidHom.instFunLike
quotientMapSubgroupOfOfLe
Subgroup.inclusion
β€”β€”
quotientMulEquivOfEq_mk πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
EquivLike.toFunLike
MulEquiv.instEquivLike
quotientMulEquivOfEq
β€”β€”
quotientQuotientEquivQuotientAux_mk πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
DFunLike.coe
MonoidHom
HasQuotient.Quotient
instHasQuotientSubgroup
Quotient.group
Subgroup.map
mk'
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
map_normal
MonoidHom.instFunLike
quotientQuotientEquivQuotientAux
map
MonoidHom.id
β€”lift_mk'
map_normal
quotientQuotientEquivQuotientAux_mk_mk πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
DFunLike.coe
MonoidHom
HasQuotient.Quotient
instHasQuotientSubgroup
Quotient.group
Subgroup.map
mk'
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
map_normal
MonoidHom.instFunLike
quotientQuotientEquivQuotientAux
β€”lift_mk'
map_normal
rangeKerLift_injective πŸ“–mathematicalβ€”HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.instMembership
Subgroup.instSetLike
MonoidHom.range
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Quotient.group
MonoidHom.normal_ker
Subgroup.toGroup
MonoidHom.instFunLike
rangeKerLift
β€”Quotient.inductionOnβ‚‚'
MonoidHom.normal_ker
Quotient.sound'
leftRel_apply
MonoidHom.ker_rangeRestrict
MonoidHom.mem_ker
MonoidHom.map_mul
MonoidHom.map_inv
inv_mul_cancel
rangeKerLift_surjective πŸ“–mathematicalβ€”HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.instMembership
Subgroup.instSetLike
MonoidHom.range
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Quotient.group
MonoidHom.normal_ker
Subgroup.toGroup
MonoidHom.instFunLike
rangeKerLift
β€”MonoidHom.normal_ker
sound πŸ“–mathematicalβ€”MulOpposite
Subgroup
MulOpposite.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.op
Set
Set.smulSet
Subgroup.instSMul
Set.preimage
HasQuotient.Quotient
instHasQuotientSubgroup
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
MonoidHom.instFunLike
mk'
β€”Set.ext
strictMono_comap_prod_map πŸ“–mathematicalβ€”StrictMono
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
HasQuotient.Quotient
instHasQuotientSubgroup
Quotient.group
PartialOrder.toPreorder
Subgroup.instPartialOrder
Prod.instPreorder
Subgroup.comap
Subgroup.subtype
Subgroup.map
mk'
β€”strictMono_comap_prod_image
subgroup_eq_top_of_subsingleton πŸ“–mathematicalβ€”Top.top
Subgroup
Subgroup.instTop
β€”top_unique
eq
one_mul
inv_one
subsingleton_quotient_top πŸ“–mathematicalβ€”HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Top.top
Subgroup.instTop
β€”β€”

Subgroup.Characteristic

Theorems

NameKindAssumesProvesValidatesDepends On
comap_quotient_mk πŸ“–mathematicalβ€”Subgroup.Characteristic
Subgroup.comap
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
QuotientGroup.Quotient.group
Subgroup.normal_of_characteristic
QuotientGroup.mk'
β€”Subgroup.normal_of_characteristic
Subgroup.characteristic_iff_comap_eq
Subgroup.characteristic_iff_map_eq

---

← Back to Index