| Name | Category | Theorems |
comapMk'OrderIso π | CompOp | β |
equivQuotientSubgroupOfOfEq π | CompOp | β |
equivQuotientZPowOfEquiv π | CompOp | 3 mathmath: equivQuotientZPowOfEquiv_trans, equivQuotientZPowOfEquiv_refl, equivQuotientZPowOfEquiv_symm
|
homQuotientZPowOfHom π | CompOp | 3 mathmath: homQuotientZPowOfHom_id, homQuotientZPowOfHom_comp_of_rightInverse, homQuotientZPowOfHom_comp
|
kerLift π | CompOp | 5 mathmath: kerLift_mk, kerLift_mk', quotientKerEquivOfRightInverse_apply, kerLift_injective, quotientBot_apply
|
quotientBot π | CompOp | 2 mathmath: quotientBot_apply, quotientBot_symm_apply
|
quotientInfEquivProdNormalQuotient π | CompOp | β |
quotientInfEquivProdNormalizerQuotient π | CompOp | β |
quotientKerEquivOfRightInverse π | CompOp | 2 mathmath: quotientKerEquivOfRightInverse_apply, quotientKerEquivOfRightInverse_symm_apply
|
quotientKerEquivOfSurjective π | CompOp | β |
quotientKerEquivRange π | CompOp | 4 mathmath: Submodule.unitsQuotEquivRelPic_symm_apply, ClassGroup.equivPic_symm_apply, ClassGroup.equivPic_apply, Submodule.unitsQuotEquivRelPic_apply_coe
|
quotientMapSubgroupOfOfLe π | CompOp | 1 mathmath: quotientMapSubgroupOfOfLe_mk
|
quotientMulEquivOfEq π | CompOp | 1 mathmath: quotientMulEquivOfEq_mk
|
quotientQuotientEquivQuotient π | CompOp | β |
quotientQuotientEquivQuotientAux π | CompOp | 2 mathmath: quotientQuotientEquivQuotientAux_mk, quotientQuotientEquivQuotientAux_mk_mk
|
rangeKerLift π | CompOp | 2 mathmath: rangeKerLift_injective, rangeKerLift_surjective
|