Documentation Verification Report

Defs

πŸ“ Source: Mathlib/GroupTheory/QuotientGroup/Defs.lean

Statistics

MetricCount
DefinitionsaddSubgroup, orderIsoAddCon, subgroup, addCommGroup, addGroup, con, liftEquiv, map, mk', commGroup, group, con, liftEquiv, map, mk', orderIsoCon
16
TheoremsaddSubgroup_quotientAddGroupCon, mem_addSubgroup_iff, orderIsoAddCon_apply, orderIsoAddCon_symm_apply_coe, mem_subgroup_iff, subgroup_quotientGroupCon, addMonoidHom_ext, addMonoidHom_ext_iff, coe_mk', con_addSubgroup, con_ker_eq_addConKer, con_le_iff, con_mono, eq_iff_sub_mem, eq_zero_iff, image_coe, image_coe_inj, instNormalAddSubgroup, ker_le_range_iff, ker_lift, ker_map, ker_mk', leftRel_eq_top, liftEquiv_coe, liftEquiv_mk, lift_comp_mk', lift_mk, lift_mk', lift_quot_mk, lift_surjective_of_surjective, map_comp_map, map_id, map_id_apply, map_map, map_mk, map_mk', map_mk'_self, map_surjective_of_surjective, mk'_apply, mk'_comp_subtype, mk'_eq_mk', mk'_surjective, mk_add, mk_neg, mk_nsmul, mk_sub, mk_zero, mk_zsmul, nontrivial_iff, preimage_image_coe, range_mk', rightRel_eq_top, subsingleton_iff, coe_mk', con_ker_eq_conKer, con_le_iff, con_mono, con_subgroup, congr_apply, congr_mk, congr_mk', congr_refl, congr_symm, eq_iff_div_mem, eq_one_iff, image_coe, image_coe_inj, instNormalSubgroup, ker_le_range_iff, ker_lift, ker_map, ker_mk', leftRel_eq_top, liftEquiv_coe, liftEquiv_mk, lift_comp_mk', lift_mk, lift_mk', lift_quot_mk, lift_surjective_of_surjective, map_comp_map, map_id, map_id_apply, map_map, map_mk, map_mk', map_mk'_self, map_surjective_of_surjective, mk'_apply, mk'_comp_subtype, mk'_eq_mk', mk'_surjective, mk_div, mk_inv, mk_mul, mk_one, mk_pow, mk_zpow, monoidHom_ext, monoidHom_ext_iff, nontrivial_iff, preimage_image_coe, range_mk', rightRel_eq_top, subsingleton_iff, orderIsoCon_apply, orderIsoCon_symm_apply_coe
107
Total123

AddCon

Definitions

NameCategoryTheorems
addSubgroup πŸ“–CompOp
5 mathmath: mem_addSubgroup_iff, AddSubgroup.orderIsoAddCon_symm_apply_coe, addSubgroup_quotientAddGroupCon, QuotientAddGroup.instNormalAddSubgroup, QuotientAddGroup.con_addSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
addSubgroup_quotientAddGroupCon πŸ“–mathematicalβ€”addSubgroup
QuotientAddGroup.con
β€”AddSubgroup.ext
mem_addSubgroup_iff
QuotientAddGroup.leftRel_apply
add_zero
neg_mem_iff
AddSubgroupClass.toNegMemClass
AddSubgroup.instAddSubgroupClass
mem_addSubgroup_iff πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
addSubgroup
DFunLike.coe
AddCon
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instFunLikeForallProp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”β€”

AddSubgroup

Definitions

NameCategoryTheorems
orderIsoAddCon πŸ“–CompOp
2 mathmath: orderIsoAddCon_symm_apply_coe, orderIsoAddCon_apply

Theorems

NameKindAssumesProvesValidatesDepends On
orderIsoAddCon_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
AddSubgroup
Normal
AddCon
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AddCon.instLE
RelIso.instFunLike
orderIsoAddCon
QuotientAddGroup.con
β€”β€”
orderIsoAddCon_symm_apply_coe πŸ“–mathematicalβ€”AddSubgroup
Normal
DFunLike.coe
RelIso
AddCon
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCon.instLE
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RelIso.instFunLike
RelIso.symm
orderIsoAddCon
AddCon.addSubgroup
β€”β€”

Con

Definitions

NameCategoryTheorems
subgroup πŸ“–CompOp
5 mathmath: QuotientGroup.con_subgroup, mem_subgroup_iff, QuotientGroup.instNormalSubgroup, subgroup_quotientGroupCon, Subgroup.orderIsoCon_symm_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
mem_subgroup_iff πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
Subgroup.instSetLike
subgroup
DFunLike.coe
Con
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instFunLikeForallProp
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
subgroup_quotientGroupCon πŸ“–mathematicalβ€”subgroup
QuotientGroup.con
β€”Subgroup.ext
mul_one
SubgroupClass.toInvMemClass
Subgroup.instSubgroupClass

QuotientAddGroup

Definitions

NameCategoryTheorems
con πŸ“–CompOp
6 mathmath: AddCon.addSubgroup_quotientAddGroupCon, AddSubgroup.orderIsoAddCon_apply, con_ker_eq_addConKer, con_mono, con_le_iff, con_addSubgroup
liftEquiv πŸ“–CompOp
2 mathmath: liftEquiv_coe, liftEquiv_mk
map πŸ“–CompOp
9 mathmath: ker_map, map_comp_map, map_surjective_of_surjective, map_mk', map_mk, map_id, map_map, quotientQuotientEquivQuotientAux_mk, map_id_apply
mk' πŸ“–CompOp
32 mathmath: mk'_eq_mk', ker_map, coe_mk', ker_mk', CategoryTheory.ShortComplex.abLeftHomologyData_Ο€, AddSubgroup.goursat_surjective, ker_le_range_iff, mk'_comp_subtype, strictMono_comap_prod_map, AddSubgroup.Characteristic.comap_quotient_mk, comap_map_mk', sound, Finset.card_nsmul_quotient_add_nsmul_inter_addSubgroup_le, ker_lift, lift_comp_mk', quotient_norm_mk_eq, Finset.le_card_quotient_add_sq_inter_addSubgroup, AddCircle.continuous_mk', comap_comap_center, map_mk', addMonoidHom_ext_iff, range_mk', map_normal, quotientQuotientEquivQuotientAux_mk, mk'_surjective, map_mk'_self, exists_norm_add_lt, AddSubgroup.goursat, AddSubgroup.normedMk.apply, quotientQuotientEquivQuotientAux_mk_mk, mk'_apply, le_comap_mk'

Theorems

NameKindAssumesProvesValidatesDepends On
addMonoidHom_ext πŸ“–β€”AddMonoidHom.comp
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
mk'
β€”β€”AddMonoidHom.ext
induction_on
DFunLike.congr_fun
addMonoidHom_ext_iff πŸ“–mathematicalβ€”AddMonoidHom.comp
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
mk'
β€”addMonoidHom_ext
coe_mk' πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddMonoidHom.instFunLike
mk'
β€”β€”
con_addSubgroup πŸ“–mathematicalβ€”con
AddCon.addSubgroup
instNormalAddSubgroup
β€”AddCon.ext
instNormalAddSubgroup
con.eq_1
leftRel_apply
AddCon.mem_addSubgroup_iff
add_zero
add_neg_cancel_left
AddCon.add
AddCon.refl
AddCon.symm
neg_add_cancel
con_ker_eq_addConKer πŸ“–mathematicalβ€”con
AddMonoidHom.ker
AddMonoid.toAddZeroClass
AddMonoidHom.normal_ker
AddCon.ker
AddMonoidHom
AddZeroClass.toAddZero
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddZero.toAdd
AddMonoidHom.instFunLike
AddMonoidHomClass.toAddHomClass
AddMonoidHom.instAddMonoidHomClass
β€”AddCon.ext
AddMonoidHom.normal_ker
AddMonoidHomClass.toAddHomClass
AddMonoidHom.instAddMonoidHomClass
con.eq_1
Setoid.comm'
leftRel_apply
AddCon.ker_rel
AddMonoidHom.eq_iff
con_le_iff πŸ“–mathematicalβ€”AddCon
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCon.instLE
con
AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
β€”RelIso.map_rel_iff
con_mono πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddCon
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCon.instLE
con
β€”con_le_iff
eq_iff_sub_mem πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”eq
AddSubgroup.Normal.mem_comm_iff
sub_eq_add_neg
eq_zero_iff πŸ“–mathematicalβ€”HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Quotient.addGroup
SetLike.instMembership
AddSubgroup.instSetLike
β€”eq
add_zero
AddSubgroup.neg_mem_iff
image_coe πŸ“–mathematicalβ€”Set.image
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
SetLike.coe
AddSubgroup.instSetLike
Set
Set.zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Quotient.addGroup
β€”map_mk'_self
image_coe_inj πŸ“–mathematicalβ€”Set.image
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SetLike.coe
AddSubgroup.instSetLike
β€”preimage_image_coe
Function.Surjective.preimage_injective
mk_surjective
instNormalAddSubgroup πŸ“–mathematicalβ€”AddSubgroup.Normal
AddCon.addSubgroup
β€”AddCon.mem_addSubgroup_iff
add_zero
add_neg_cancel
AddCon.add
AddCon.refl
ker_le_range_iff πŸ“–mathematicalβ€”AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddMonoidHom.ker
AddMonoidHom.range
AddMonoidHom.comp
SetLike.instMembership
AddSubgroup.instSetLike
HasQuotient.Quotient
instHasQuotientAddSubgroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup.toAddGroup
Quotient.addGroup
mk'
AddSubgroup.subtype
AddMonoidHom
instZeroAddMonoidHom
β€”AddMonoidHom.ext
eq_zero_iff
DFunLike.congr_fun
ker_lift πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddMonoidHom.ker
AddMonoid.toAddZeroClass
HasQuotient.Quotient
instHasQuotientAddSubgroup
Quotient.addGroup
lift
AddSubgroup.map
mk'
β€”lift_comp_mk'
AddMonoidHom.comap_ker
AddSubgroup.map_comap_eq_self_of_surjective
mk'_surjective
ker_map πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddSubgroup.comap
AddMonoidHom.ker
HasQuotient.Quotient
instHasQuotientAddSubgroup
Quotient.addGroup
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
map
AddSubgroup.map
mk'
β€”ker_mk'
ker_lift
ker_mk' πŸ“–mathematicalβ€”AddMonoidHom.ker
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
mk'
β€”AddSubgroup.ext
eq_zero_iff
leftRel_eq_top πŸ“–mathematicalβ€”leftRel
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Setoid.completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
AddSubgroup
AddSubgroup.instTop
β€”AddAction.mem_orbit_iff
eq_neg_add_iff_add_eq
AddSubgroup.mem_op
AddOpposite.exists
Setoid.mk_eq_top
AddSubgroup.ext
AddSubgroup.mem_top
neg_zero
zero_add
liftEquiv_coe πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoidHom.instFunLike
AddMonoidHom.ker
AddEquiv
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddZero.toAdd
Quotient.addGroup
EquivLike.toFunLike
AddEquiv.instEquivLike
liftEquiv
β€”β€”
liftEquiv_mk πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoidHom.instFunLike
AddMonoidHom.ker
AddEquiv
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddZero.toAdd
Quotient.addGroup
EquivLike.toFunLike
AddEquiv.instEquivLike
liftEquiv
β€”β€”
lift_comp_mk' πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddMonoidHom.ker
AddMonoid.toAddZeroClass
AddMonoidHom.comp
HasQuotient.Quotient
instHasQuotientAddSubgroup
AddZeroClass.toAddZero
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
lift
mk'
β€”β€”
lift_mk πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddMonoidHom.ker
AddMonoid.toAddZeroClass
DFunLike.coe
AddMonoidHom
HasQuotient.Quotient
instHasQuotientAddSubgroup
AddZeroClass.toAddZero
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddMonoidHom.instFunLike
lift
β€”β€”
lift_mk' πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddMonoidHom.ker
AddMonoid.toAddZeroClass
DFunLike.coe
AddMonoidHom
HasQuotient.Quotient
instHasQuotientAddSubgroup
AddZeroClass.toAddZero
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddMonoidHom.instFunLike
lift
β€”β€”
lift_quot_mk πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddMonoidHom.ker
AddMonoid.toAddZeroClass
DFunLike.coe
AddMonoidHom
HasQuotient.Quotient
instHasQuotientAddSubgroup
AddZeroClass.toAddZero
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddMonoidHom.instFunLike
lift
leftRel
β€”β€”
lift_surjective_of_surjective πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoidHom.instFunLike
AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddMonoidHom.ker
HasQuotient.Quotient
instHasQuotientAddSubgroup
Quotient.addGroup
lift
β€”Quotient.lift_surjective
map_comp_map πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddSubgroup.comap
AddMonoidHom.comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
LE.le.trans
LE.le.trans_eq
AddSubgroup.comap_mono
AddSubgroup.comap_comap
HasQuotient.Quotient
instHasQuotientAddSubgroup
Quotient.addGroup
map
β€”AddMonoidHom.ext
map_map
map_id πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddSubgroup.comap
AddMonoidHom.id
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Eq.le
AddSubgroup.comap_id
map
HasQuotient.Quotient
instHasQuotientAddSubgroup
Quotient.addGroup
β€”AddMonoidHom.ext
map_id_apply
map_id_apply πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddSubgroup.comap
AddMonoidHom.id
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Eq.le
AddSubgroup.comap_id
DFunLike.coe
AddMonoidHom
HasQuotient.Quotient
instHasQuotientAddSubgroup
Quotient.addGroup
AddMonoidHom.instFunLike
map
β€”induction_on
map_map πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddSubgroup.comap
AddMonoidHom.comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
LE.le.trans
LE.le.trans_eq
AddSubgroup.comap_mono
AddSubgroup.comap_comap
DFunLike.coe
AddMonoidHom
HasQuotient.Quotient
instHasQuotientAddSubgroup
Quotient.addGroup
AddMonoidHom.instFunLike
map
β€”induction_on
map_mk πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddSubgroup.comap
DFunLike.coe
AddMonoidHom
HasQuotient.Quotient
instHasQuotientAddSubgroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddMonoidHom.instFunLike
map
β€”β€”
map_mk' πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddSubgroup.comap
DFunLike.coe
AddMonoidHom
HasQuotient.Quotient
instHasQuotientAddSubgroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddMonoidHom.instFunLike
map
mk'
β€”β€”
map_mk'_self πŸ“–mathematicalβ€”AddSubgroup.map
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Quotient.addGroup
mk'
Bot.bot
AddSubgroup.instBot
β€”AddSubgroup.ext
AddSubgroup.mem_map
AddSubgroup.mem_bot
eq_zero_iff
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
AddSubgroup.instAddSubgroupClass
map_surjective_of_surjective πŸ“–mathematicalHasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoidHom.instFunLike
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddSubgroup.comap
Quotient.addGroup
map
β€”lift_surjective_of_surjective
mk'_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddMonoidHom.instFunLike
mk'
β€”β€”
mk'_comp_subtype πŸ“–mathematicalβ€”AddMonoidHom.comp
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
HasQuotient.Quotient
instHasQuotientAddSubgroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup.toAddGroup
Quotient.addGroup
mk'
AddSubgroup.subtype
AddMonoidHom
instZeroAddMonoidHom
β€”AddMonoidHom.ext
eq_zero_iff
SetLike.coe_mem
mk'_eq_mk' πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddMonoidHom.instFunLike
mk'
SetLike.instMembership
AddSubgroup.instSetLike
AddZero.toAdd
β€”eq
eq_neg_add_iff_add_eq
mk'_surjective πŸ“–mathematicalβ€”HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Quotient.addGroup
AddMonoidHom.instFunLike
mk'
β€”mk_surjective
mk_add πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Quotient.addGroup
β€”β€”
mk_neg πŸ“–mathematicalβ€”NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Quotient.addGroup
β€”β€”
mk_nsmul πŸ“–mathematicalβ€”AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Quotient.addGroup
β€”β€”
mk_sub πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Quotient.addGroup
β€”β€”
mk_zero πŸ“–mathematicalβ€”NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Quotient.addGroup
β€”β€”
mk_zsmul πŸ“–mathematicalβ€”SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Quotient.addGroup
β€”β€”
nontrivial_iff πŸ“–mathematicalβ€”Nontrivial
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
β€”not_subsingleton_iff_nontrivial
subsingleton_iff
preimage_image_coe πŸ“–mathematicalβ€”Set.preimage
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Set.image
Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SetLike.coe
AddSubgroup.instSetLike
β€”Set.ext
eq_zero_iff
sub_self
sub_add_cancel
right_eq_add
AddRightCancelSemigroup.toIsRightCancelAdd
range_mk' πŸ“–mathematicalβ€”AddMonoidHom.range
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Quotient.addGroup
mk'
Top.top
AddSubgroup.instTop
β€”AddMonoidHom.range_eq_top
mk'_surjective
rightRel_eq_top πŸ“–mathematicalβ€”rightRel
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Setoid.completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
AddSubgroup
AddSubgroup.instTop
β€”AddAction.mem_orbit_iff
eq_add_neg_iff_add_eq
Setoid.mk_eq_top
AddSubgroup.ext
AddSubgroup.mem_top
neg_zero
add_zero
subsingleton_iff πŸ“–mathematicalβ€”HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
Top.top
AddSubgroup.instTop
β€”Quotient.subsingleton_iff
leftRel_eq_top

QuotientAddGroup.Quotient

Definitions

NameCategoryTheorems
addCommGroup πŸ“–CompOp
78 mathmath: HurwitzZeta.isBigO_atTop_evenKernel_sub, HurwitzZeta.expZeta_zero, AddCircle.coe_eq_zero_iff, AddCircle.isAddQuotientCoveringMap_zsmul_of_ne_zero, CharacterModule.int.divByNat_self, AddCircle.card_torsion_le_of_isSMulRegular, AddCircle.coe_neg, AddCircle.isAddQuotientCoveringMap_nsmul_of_ne_zero, AddCircle.isAddQuotientCoveringMap_nsmul, QuotientAddGroup.equivIocMod_zero, HurwitzZeta.hurwitzZetaEven_zero, CharacterModule.instLinearMapClassIntAddCircleRatOfNat, AddCircle.finite_torsion_of_isSMulRegular, HurwitzZeta.completedSinZeta_neg, HurwitzZeta.evenKernel_eq_cosKernel_of_zero, HurwitzZeta.hurwitzZetaEven_apply_zero, HurwitzZeta.expZeta_one_sub, CategoryTheory.ShortComplex.abLeftHomologyData_Ο€, fourier_neg', HurwitzZeta.sinKernel_neg, HurwitzZeta.hurwitzEvenFEPair_zero_symm, AddCircle.equivAddCircle_apply_mk, HurwitzZeta.cosZeta_eq, AddAction.zmultiplesQuotientStabilizerEquiv_symm_apply, AddCircle.coe_eq_zero_iff_of_mem_Ico, quotient_norm_add_le, HurwitzZeta.completedHurwitzZetaEven_eq, HurwitzZeta.completedCosZetaβ‚€_neg, fourier_eval_zero, AddCircle.coe_zero, HurwitzZeta.sinKernel_zero, HurwitzZeta.completedCosZetaβ‚€_zero, HurwitzZeta.oddKernel_zero, QuotientAddGroup.nhds_zero_hasBasis, AddCircle.toCircle_zero, AddCircle.card_torsion_le_of_isSMulRegular_int, HurwitzZeta.completedHurwitzZetaOdd_neg, HurwitzZeta.oddKernel_neg, HurwitzZeta.evenKernel_neg, HurwitzZeta.cosZeta_zero, AddCircle.coe_eq_zero_of_pos_iff, HurwitzZeta.completedHurwitzZetaEven_zero, HurwitzZeta.hurwitzZetaOdd_eq, HurwitzZeta.hurwitzZeta_zero, QuotientAddGroup.mk_sum, QuotientAddGroup.zmultiples_zsmul_eq_zsmul_iff, HurwitzZeta.hurwitzZeta_one_sub, HurwitzZeta.completedHurwitzZetaEvenβ‚€_neg, HurwitzZeta.completedHurwitzZetaEvenβ‚€_zero, HurwitzZeta.sinZeta_neg, HurwitzZeta.completedCosZeta_eq, HurwitzZeta.hurwitzEvenFEPair_neg, AddCircle.finite_torsion, HurwitzZeta.completedHurwitzZetaEven_neg, QuotientAddGroup.zmultiples_nsmul_eq_nsmul_iff, HurwitzZeta.cosKernel_neg, CharacterModule.uncurry_apply, AddCircle.nsmul_eq_zero_iff, fourier_zero', AddCircle.isAddQuotientCoveringMap_zsmul, AddCircle.coe_period, AddCircle.finite_torsion_of_isSMulRegular_int, HurwitzZeta.completedCosZeta_zero, HurwitzZeta.completedCosZeta_neg, HurwitzZeta.cosZeta_neg, QuotientAddGroup.equivIcoMod_zero, HurwitzZeta.hurwitzZetaOdd_neg, ZMod.toAddCircle_eq_zero, HurwitzZeta.completedHurwitzZetaEven_residue_zero, HurwitzZeta.sinZeta_eq, AddCircle.coe_add, CharacterModule.homEquiv_apply_apply, AddCircle.equivAddCircle_symm_apply_mk, AddCircle.toCircle_neg, HurwitzZeta.hurwitzZetaEven_neg, HurwitzZeta.hurwitzZetaEven_eq, HurwitzKernelBounds.isBigO_atTop_F_int_zero_sub, HurwitzZeta.hasSum_int_evenKernelβ‚€
addGroup πŸ“–CompOp
145 mathmath: QuotientAddGroup.kerLift_mk, AddCircle.not_isOfFinAddOrder_iff_forall_rat_ne_div, AddCircle.isAddQuotientCoveringMap_zsmul_of_ne_zero, ZMod.LFunction_stdAddChar_eq_expZeta, QuotientAddGroup.completeSpace_right', AddCircle.card_torsion_le_of_isSMulRegular, QuotientAddGroup.equivQuotientZSMulOfEquiv_symm, AddCircle.isAddFundamentalDomain_of_ae_ball, QuotientAddGroup.mk'_eq_mk', AddCircle.isAddQuotientCoveringMap_nsmul_of_ne_zero, QuotientAddGroup.ker_map, AddCircle.isAddQuotientCoveringMap_nsmul, QuotientAddGroup.coe_mk', QuotientAddGroup.completeSpace_left, ZMod.completedLFunction_def_even, MeasureTheory.AddQuotientMeasureEqMeasurePreimage.addInvariantMeasure_quotient, QuotientAddGroup.liftEquiv_coe, CharacterModule.curry_apply_apply, AddCircle.coe_zsmul, QuotientAddGroup.ker_mk', AddCircle.isOfFinAddOrder_iff_exists_rat_eq_div, AdjoinRoot.evalEval_apply, AddCircle.finite_torsion_of_isSMulRegular, ZMod.LFunction_def_odd, AddCircle.instIsAddHaarMeasureRealVolume, QuotientAddGroup.equivQuotientZSMulOfEquiv_trans, AddCircle.dense_addSubgroup_iff_ne_zmultiples, QuotientAddGroup.completeSpace_right, AddCircle.denseRange_zsmul_iff, QuotientAddGroup.liftEquiv_mk, fourier_neg', ZMod.toAddCircle_inj, ZMod.completedLFunction_def_odd, AddGroup.exponent_quotient_dvd, AddCircle.addOrderOf_div_of_gcd_eq_one, AddCircle.coe_sub, AddSubgroup.goursat_surjective, QuotientAddGroup.lift_mk', AddCircle.finite_setOf_addOrderOf_eq, AddAction.zmultiplesQuotientStabilizerEquiv_symm_apply, QuotientAddGroup.map_comp_map, QuotientAddGroup.instIsTopologicalAddGroup, QuotientAddGroup.fg, QuotientAddGroup.ker_le_range_iff, QuotientAddGroup.mk'_comp_subtype, AddCircle.coe_nsmul, QuotientAddGroup.strictMono_comap_prod_map, AddCircle.card_addOrderOf_eq_totient, QuotientAddGroup.mk_add, AddSubgroup.Characteristic.comap_quotient_mk, QuotientAddGroup.comap_map_mk', QuotientAddGroup.sound, Finset.card_nsmul_quotient_add_nsmul_inter_addSubgroup_le, QuotientAddGroup.homQuotientZSMulOfHom_comp_of_rightInverse, ZMod.toAddCircle_natCast, QuotientAddGroup.quotientAddEquivOfEq_mk, QuotientAddGroup.ker_lift, AddCircle.toCircle_zsmul, AddCircle.card_torsion_le_of_isSMulRegular_int, QuotientAddGroup.lift_comp_mk', QuotientAddGroup.lift_mk, UnitAddCircle.mem_approxAddOrderOf_iff, QuotientAddGroup.mk_sub, QuotientAddGroup.quotientKerEquivOfRightInverse_symm_apply, ZMod.LFunction_def_even, fourier_apply, quotient_norm_mk_eq, CharacterModule.homEquiv_symm_apply_apply_apply, QuotientAddGroup.quotientMapAddSubgroupOfOfLe_mk, QuotientAddGroup.mk_nat_mul, AddCircle.denseRange_zsmul_coe_iff, QuotientAddGroup.norm_lift_apply_le, QuotientAddGroup.map_surjective_of_surjective, QuotientAddGroup.mk_zero, QuotientAddGroup.quotientBot_apply, AddCircle.ergodic_zsmul, QuotientAddGroup.quotientKerEquivOfRightInverse_apply, Finset.le_card_quotient_add_sq_inter_addSubgroup, QuotientAddGroup.mk_zsmul, QuotientAddGroup.mk_nsmul, QuotientAddGroup.image_coe, ZMod.toAddCircle_intCast, AddCircle.continuous_mk', ZMod.toAddCircle_apply, QuotientAddGroup.comap_comap_center, QuotientAddGroup.map_mk', QuotientAddGroup.zmultiples_zsmul_eq_zsmul_iff, ZMod.toAddCircle_injective, AddCircle.addOrderOf_eq_pos_iff, QuotientAddGroup.quotientBot_symm_apply, QuotientAddGroup.addMonoidHom_ext_iff, QuotientAddGroup.range_mk', AddCircle.finite_torsion, QuotientAddGroup.map_mk, QuotientAddGroup.lift_surjective_of_surjective, QuotientAddGroup.equivQuotientZSMulOfEquiv_refl, QuotientAddGroup.zmultiples_nsmul_eq_nsmul_iff, QuotientAddGroup.norm_eq_addGroupSeminorm, AddCircle.nsmul_eq_zero_iff, AddCircle.isAddQuotientCoveringMap_zsmul, UnitAddCircle.mem_addWellApproximable_iff, QuotientAddGroup.map_normal, QuotientAddGroup.map_id, AddCircle.finite_torsion_of_isSMulRegular_int, QuotientAddGroup.map_map, QuotientAddGroup.lift_quot_mk, AddCircle.addOrderOf_period_div, AddAction.stabilizer_image_coe_quotient, QuotientAddGroup.kerLift_mk', fourier_coe_apply', QuotientAddGroup.quotientQuotientEquivQuotientAux_mk, QuotientAddGroup.eq_zero_iff, AddCircle.addOrderOf_div_of_gcd_eq_one', QuotientAddGroup.mk_int_mul, QuotientAddGroup.mk'_surjective, QuotientAddGroup.kerLift_injective, QuotientAddGroup.mk_neg, ZMod.toAddCircle_eq_zero, QuotientAddGroup.map_mk'_self, QuotientAddGroup.exists_norm_add_lt, AddCircle.intCast_div_mul_eq_zsmul, fourier_add', AddCircle.addOrderOf_coe_rat, MeasureTheory.AddQuotientMeasureEqMeasurePreimage.addHaarMeasure_quotient, AddSubgroup.goursat, AddSubgroup.normedMk.apply, instIsAddHaarMeasureUnitAddCircleVolume, ZMod.LFunction_dft, CharacterModule.dual_apply, QuotientAddGroup.rangeKerLift_injective, KaehlerDifferential.quotKerTotalEquiv_apply, QuotientAddGroup.instIsAddTorsionFree, QuotientAddGroup.rangeKerLift_surjective, QuotientAddGroup.quotientQuotientEquivQuotientAux_mk_mk, QuotientAddGroup.mk'_apply, QuotientAddGroup.homQuotientZSMulOfHom_comp, QuotientAddGroup.completeSpace_left', AddCircle.ergodic_zsmul_add, AddCircle.gcd_mul_addOrderOf_div_eq, QuotientAddGroup.homQuotientZSMulOfHom_id, QuotientAddGroup.le_comap_mk', Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, AddCircle.natCast_div_mul_eq_nsmul, IsFundamentalDomain.AddQuotientMeasureEqMeasurePreimage_vaddAddHaarMeasure, QuotientAddGroup.map_id_apply

QuotientGroup

Definitions

NameCategoryTheorems
con πŸ“–CompOp
6 mathmath: con_le_iff, con_subgroup, Subgroup.orderIsoCon_apply, con_ker_eq_conKer, Con.subgroup_quotientGroupCon, con_mono
liftEquiv πŸ“–CompOp
2 mathmath: liftEquiv_coe, liftEquiv_mk
map πŸ“–CompOp
10 mathmath: quotientQuotientEquivQuotientAux_mk, Ideal.Quotient.stabilizerHomSurjectiveAuxFunctor_aux, map_id, map_surjective_of_surjective, map_mk', map_mk, ker_map, map_id_apply, map_comp_map, map_map
mk' πŸ“–CompOp
43 mathmath: groupHomology.map₁_quotientGroupMk'_epi, groupHomology.coinfNatTrans_app, coe_mk', groupCohomology.infNatTrans_app, quotientQuotientEquivQuotientAux_mk, lift_comp_mk', groupHomology.H1CoresCoinf_g, mk'_apply, mk'_comp_subtype, mk'_eq_mk', map_mk', ker_map, quotientQuotientEquivQuotientAux_mk_mk, congr_apply, range_mk', ker_lift, comap_upperCentralSeries_quotient_center, map_normal, Finset.le_card_quotient_mul_sq_inter_subgroup, congr_mk', Subgroup.goursat_surjective, exists_norm_mul_lt, comap_map_mk', Finset.card_pow_quotient_mul_pow_inter_subgroup_le, groupHomology.H1CoresCoinfOfTrivial_g, monoidHom_ext_iff, upperCentralSeriesStep_eq_comap_center, map_mk'_self, ClassGroup.equiv_mk0, ker_le_range_iff, mk'_surjective, comap_comap_center, ker_mk', strictMono_comap_prod_map, groupCohomology.H1InfRes_f, le_comap_mk', ValuationSubring.unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk, Subgroup.Characteristic.comap_quotient_mk, ClassGroup.mk_def, sound, groupHomology.mapCycles₁_quotientGroupMk'_epi, Subgroup.goursat, ClassGroup.equiv_mk

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mk' πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
MonoidHom.instFunLike
mk'
β€”β€”
con_ker_eq_conKer πŸ“–mathematicalβ€”con
MonoidHom.ker
Monoid.toMulOneClass
MonoidHom.normal_ker
Con.ker
MonoidHom
MulOneClass.toMulOne
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulOne.toMul
MonoidHom.instFunLike
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
β€”Con.ext
MonoidHom.normal_ker
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
con.eq_1
Setoid.comm'
leftRel_apply
Con.ker_rel
MonoidHom.eq_iff
con_le_iff πŸ“–mathematicalβ€”Con
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Con.instLE
con
Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
β€”RelIso.map_rel_iff
con_mono πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Con
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Con.instLE
con
β€”con_le_iff
con_subgroup πŸ“–mathematicalβ€”con
Con.subgroup
instNormalSubgroup
β€”Con.ext
instNormalSubgroup
con.eq_1
leftRel_apply
Con.mem_subgroup_iff
mul_one
mul_inv_cancel_left
Con.mul
Con.refl
Con.symm
inv_mul_cancel
congr_apply πŸ“–mathematicalSubgroup.map
MonoidHomClass.toMonoidHom
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
DFunLike.coe
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.group
congr
MonoidHom
MonoidHom.instFunLike
mk'
β€”MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
congr_mk πŸ“–mathematicalSubgroup.map
MonoidHomClass.toMonoidHom
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
DFunLike.coe
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.group
congr
β€”MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
congr_mk' πŸ“–mathematicalSubgroup.map
MonoidHomClass.toMonoidHom
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
DFunLike.coe
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.group
congr
MonoidHom
MonoidHom.instFunLike
mk'
β€”MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
congr_refl πŸ“–mathematicalSubgroup
Subgroup.map
MonoidHomClass.toMonoidHom
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
MulEquiv.refl
Subgroup.map_id
congr
HasQuotient.Quotient
instHasQuotientSubgroup
Quotient.group
β€”MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
MulEquiv.ext
congr_symm πŸ“–mathematicalSubgroup.map
MonoidHomClass.toMonoidHom
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
MulEquiv.symm
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.group
congr
Subgroup.map_symm_eq_iff_map_eq
β€”MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
eq_iff_div_mem πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”eq
Subgroup.Normal.mem_comm_iff
div_eq_mul_inv
eq_one_iff πŸ“–mathematicalβ€”HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Quotient.group
SetLike.instMembership
Subgroup.instSetLike
β€”eq
mul_one
Subgroup.inv_mem_iff
image_coe πŸ“–mathematicalβ€”Set.image
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
SetLike.coe
Subgroup.instSetLike
Set
Set.one
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Quotient.group
β€”map_mk'_self
image_coe_inj πŸ“–mathematicalβ€”Set.image
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.coe
Subgroup.instSetLike
β€”Function.Surjective.preimage_injective
mk_surjective
instNormalSubgroup πŸ“–mathematicalβ€”Subgroup.Normal
Con.subgroup
β€”mul_one
mul_inv_cancel
Con.mul
Con.refl
ker_le_range_iff πŸ“–mathematicalβ€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MonoidHom.ker
MonoidHom.range
MonoidHom.comp
SetLike.instMembership
Subgroup.instSetLike
HasQuotient.Quotient
instHasQuotientSubgroup
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Quotient.group
mk'
Subgroup.subtype
MonoidHom
instOneMonoidHom
β€”MonoidHom.ext
eq_one_iff
DFunLike.congr_fun
ker_lift πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MonoidHom.ker
Monoid.toMulOneClass
HasQuotient.Quotient
instHasQuotientSubgroup
Quotient.group
lift
Subgroup.map
mk'
β€”lift_comp_mk'
MonoidHom.comap_ker
Subgroup.map_comap_eq_self_of_surjective
mk'_surjective
ker_map πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.comap
MonoidHom.ker
HasQuotient.Quotient
instHasQuotientSubgroup
Quotient.group
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
map
Subgroup.map
mk'
β€”ker_mk'
ker_lift
ker_mk' πŸ“–mathematicalβ€”MonoidHom.ker
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
mk'
β€”Subgroup.ext
eq_one_iff
leftRel_eq_top πŸ“–mathematicalβ€”leftRel
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Setoid.completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Subgroup
Subgroup.instTop
β€”Subgroup.ext
inv_one
one_mul
liftEquiv_coe πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
MonoidHom.ker
MulEquiv
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MulOne.toMul
Quotient.group
EquivLike.toFunLike
MulEquiv.instEquivLike
liftEquiv
β€”β€”
liftEquiv_mk πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
MonoidHom.ker
MulEquiv
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MulOne.toMul
Quotient.group
EquivLike.toFunLike
MulEquiv.instEquivLike
liftEquiv
β€”β€”
lift_comp_mk' πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MonoidHom.ker
Monoid.toMulOneClass
MonoidHom.comp
HasQuotient.Quotient
instHasQuotientSubgroup
MulOneClass.toMulOne
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
lift
mk'
β€”β€”
lift_mk πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MonoidHom.ker
Monoid.toMulOneClass
DFunLike.coe
MonoidHom
HasQuotient.Quotient
instHasQuotientSubgroup
MulOneClass.toMulOne
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
MonoidHom.instFunLike
lift
β€”β€”
lift_mk' πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MonoidHom.ker
Monoid.toMulOneClass
DFunLike.coe
MonoidHom
HasQuotient.Quotient
instHasQuotientSubgroup
MulOneClass.toMulOne
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
MonoidHom.instFunLike
lift
β€”β€”
lift_quot_mk πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MonoidHom.ker
Monoid.toMulOneClass
DFunLike.coe
MonoidHom
HasQuotient.Quotient
instHasQuotientSubgroup
MulOneClass.toMulOne
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
MonoidHom.instFunLike
lift
leftRel
β€”β€”
lift_surjective_of_surjective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MonoidHom.ker
HasQuotient.Quotient
instHasQuotientSubgroup
Quotient.group
lift
β€”Quotient.lift_surjective
map_comp_map πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.comap
MonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LE.le.trans
LE.le.trans_eq
Subgroup.comap_mono
Subgroup.comap_comap
HasQuotient.Quotient
instHasQuotientSubgroup
Quotient.group
map
β€”MonoidHom.ext
map_map
map_id πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.comap
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Eq.le
Subgroup.comap_id
map
HasQuotient.Quotient
instHasQuotientSubgroup
Quotient.group
β€”MonoidHom.ext
map_id_apply
map_id_apply πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.comap
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Eq.le
Subgroup.comap_id
DFunLike.coe
MonoidHom
HasQuotient.Quotient
instHasQuotientSubgroup
Quotient.group
MonoidHom.instFunLike
map
β€”induction_on
map_map πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.comap
MonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LE.le.trans
LE.le.trans_eq
Subgroup.comap_mono
Subgroup.comap_comap
DFunLike.coe
MonoidHom
HasQuotient.Quotient
instHasQuotientSubgroup
Quotient.group
MonoidHom.instFunLike
map
β€”induction_on
map_mk πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.comap
DFunLike.coe
MonoidHom
HasQuotient.Quotient
instHasQuotientSubgroup
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
MonoidHom.instFunLike
map
β€”β€”
map_mk' πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.comap
DFunLike.coe
MonoidHom
HasQuotient.Quotient
instHasQuotientSubgroup
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
MonoidHom.instFunLike
map
mk'
β€”β€”
map_mk'_self πŸ“–mathematicalβ€”Subgroup.map
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.group
mk'
Bot.bot
Subgroup.instBot
β€”Subgroup.ext
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
map_surjective_of_surjective πŸ“–mathematicalHasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.comap
Quotient.group
map
β€”lift_surjective_of_surjective
mk'_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
MonoidHom.instFunLike
mk'
β€”β€”
mk'_comp_subtype πŸ“–mathematicalβ€”MonoidHom.comp
Subgroup
SetLike.instMembership
Subgroup.instSetLike
HasQuotient.Quotient
instHasQuotientSubgroup
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Quotient.group
mk'
Subgroup.subtype
MonoidHom
instOneMonoidHom
β€”MonoidHom.ext
mk'_eq_mk' πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
MonoidHom.instFunLike
mk'
SetLike.instMembership
Subgroup.instSetLike
MulOne.toMul
β€”eq
mk'_surjective πŸ“–mathematicalβ€”HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
MonoidHom.instFunLike
mk'
β€”mk_surjective
mk_div πŸ“–mathematicalβ€”DivInvMonoid.toDiv
Group.toDivInvMonoid
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.group
β€”β€”
mk_inv πŸ“–mathematicalβ€”InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.group
β€”β€”
mk_mul πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.group
β€”β€”
mk_one πŸ“–mathematicalβ€”InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.group
β€”β€”
mk_pow πŸ“–mathematicalβ€”Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.group
β€”β€”
mk_zpow πŸ“–mathematicalβ€”DivInvMonoid.toZPow
Group.toDivInvMonoid
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.group
β€”β€”
monoidHom_ext πŸ“–β€”MonoidHom.comp
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
mk'
β€”β€”MonoidHom.ext
induction_on
DFunLike.congr_fun
monoidHom_ext_iff πŸ“–mathematicalβ€”MonoidHom.comp
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.group
mk'
β€”monoidHom_ext
nontrivial_iff πŸ“–mathematicalβ€”Nontrivial
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
β€”β€”
preimage_image_coe πŸ“–mathematicalβ€”Set.preimage
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Set.image
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.coe
Subgroup.instSetLike
β€”Set.ext
eq_one_iff
div_self'
div_mul_cancel
RightCancelSemigroup.toIsRightCancelMul
range_mk' πŸ“–mathematicalβ€”MonoidHom.range
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Quotient.group
mk'
Top.top
Subgroup.instTop
β€”MonoidHom.range_eq_top
mk'_surjective
rightRel_eq_top πŸ“–mathematicalβ€”rightRel
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Setoid.completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Subgroup
Subgroup.instTop
β€”Subgroup.ext
inv_one
mul_one
subsingleton_iff πŸ“–mathematicalβ€”HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
Top.top
Subgroup.instTop
β€”β€”

QuotientGroup.Quotient

Definitions

NameCategoryTheorems
commGroup πŸ“–CompOp
8 mathmath: NumberField.Units.fun_eq_repr, QuotientGroup.nhds_one_hasBasis, NumberField.Units.fundSystem_mk, NumberField.Units.rank_modTorsion, NumberField.Units.logEmbeddingEquiv_apply, NumberField.Units.instFiniteIntAdditiveQuotientUnitsRingOfIntegersSubgroupTorsion, QuotientGroup.mk_prod, NumberField.Units.instFreeIntAdditiveQuotientUnitsRingOfIntegersSubgroupTorsion
group πŸ“–CompOp
139 mathmath: QuotientGroup.homQuotientZPowOfHom_id, QuotientGroup.mk_one, groupHomology.map₁_quotientGroupMk'_epi, QuotientGroup.kerLift_mk, QuotientGroup.lift_mk, groupHomology.coinfNatTrans_app, QuotientGroup.coe_mk', MonoidHom.restrictHomKerEquiv_apply_coe, nilpotencyClass_quotient_center, QuotientGroup.rangeKerLift_injective, InfiniteGalois.normalAutEquivQuotient_apply, QuotientGroup.completeSpace_left, MulAction.quotient_out_smul_fixedPoints, groupHomology.H1CoresCoinf_X₃, QuotientGroup.kerLift_mk', Subgroup.Normal.quotient_commutative_iff_commutator_le, QuotientGroup.liftEquiv_coe, IsPGroup.to_quotient, MeasureTheory.QuotientMeasureEqMeasurePreimage.mulInvariantMeasure_quotient, QuotientGroup.completeSpace_right, QuotientGroup.quotientKerEquivOfRightInverse_apply, MeasureTheory.QuotientMeasureEqMeasurePreimage.haarMeasure_quotient, NumberField.Units.logEmbeddingQuot_apply, QuotientGroup.completeSpace_right', QuotientGroup.liftEquiv_mk, QuotientGroup.congr_refl, groupCohomology.infNatTrans_app, IsDedekindDomain.selmerGroup.monotone, QuotientGroup.congr_symm, QuotientGroup.instIsMulTorsionFree, Representation.ofQuotient_coe_apply, MonoidHom.restrictHomKerEquiv_symm_coe_apply, QuotientGroup.quotientQuotientEquivQuotientAux_mk, QuotientGroup.lift_comp_mk', groupHomology.H1CoresCoinf_g, QuotientGroup.mk'_apply, IsGalois.normalAutEquivQuotient_apply, QuotientGroup.rangeKerLift_surjective, QuotientGroup.quotientKerEquivOfRightInverse_symm_apply, QuotientGroup.map_id, QuotientGroup.map_surjective_of_surjective, MulAction.coe_quotient_smul_fixedPoints, QuotientGroup.mk'_comp_subtype, QuotientGroup.mk'_eq_mk', QuotientGroup.map_mk', QuotientGroup.map_mk, QuotientGroup.quotientMapSubgroupOfOfLe_mk, IsPGroup.cyclic_center_quotient_of_card_eq_prime_sq, QuotientGroup.ker_map, Rep.quotientToInvariantsFunctor_map_hom, Ideal.Quotient.stabilizerQuotientInertiaEquiv_mk, Rep.quotientToCoinvariantsFunctor_map_hom, QuotientGroup.lift_mk', QuotientGroup.kerLift_injective, instIsInvariantSubtypeMemSubalgebraSubalgebraSubgroupQuotient, Action.FintypeCat.quotientToEndHom_mk, QuotientGroup.quotientQuotientEquivQuotientAux_mk_mk, QuotientGroup.congr_apply, QuotientGroup.mk_pow, Submodule.unitsQuotEquivRelPic_symm_apply, QuotientGroup.range_mk', QuotientGroup.homQuotientZPowOfHom_comp_of_rightInverse, QuotientGroup.ker_lift, comap_upperCentralSeries_quotient_center, QuotientGroup.fg, QuotientGroup.map_normal, QuotientGroup.homQuotientZPowOfHom_comp, groupCohomology.H1InfRes_X₁, Rep.quotientToInvariantsFunctor_obj_V, QuotientGroup.completeSpace_left', QuotientGroup.lift_surjective_of_surjective, ClassGroup.equivPic_symm_apply, Finset.le_card_quotient_mul_sq_inter_subgroup, QuotientGroup.congr_mk', QuotientGroup.mk_inv, MulAction.zpowersQuotientStabilizerEquiv_symm_apply, IsDedekindDomain.selmerGroup.fromUnit_ker, MulAction.stabilizer_image_coe_quotient, Subgroup.goursat_surjective, solvable_quotient_of_solvable, QuotientGroup.exists_norm_mul_lt, QuotientGroup.equivQuotientZPowOfEquiv_trans, QuotientGroup.comap_map_mk', ValuationSubring.unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk_apply, IsDedekindDomain.selmerGroup.fromUnitLift_injective, NumberField.Units.logEmbeddingQuot_injective, QuotientGroup.map_id_apply, IsFundamentalDomain.QuotientMeasureEqMeasurePreimage_smulHaarMeasure, Finset.card_pow_quotient_mul_pow_inter_subgroup_le, nilpotencyClass_quotient_le, groupHomology.H1CoresCoinfOfTrivial_g, QuotientGroup.map_comp_map, QuotientGroup.mk_zpow, Subgroup.IsComplement'.QuotientMulEquiv_symm_apply, QuotientGroup.monoidHom_ext_iff, QuotientGroup.quotientBot_apply, QuotientGroup.congr_mk, upperCentralSeriesStep_eq_comap_center, nilpotencyClass_eq_quotient_center_plus_one, QuotientGroup.map_mk'_self, ClassGroup.equiv_mk0, groupHomology.H1CoresCoinfOfTrivial_X₃, QuotientGroup.ker_le_range_iff, QuotientGroup.mk'_surjective, QuotientGroup.equivQuotientZPowOfEquiv_refl, QuotientGroup.mk_mul, QuotientGroup.image_coe, QuotientGroup.norm_eq_groupSeminorm, Subgroup.IsComplement'.QuotientMulEquiv_apply, QuotientGroup.equivQuotientZPowOfEquiv_symm, QuotientGroup.comap_comap_center, QuotientGroup.map_map, ClassGroup.equivPic_apply, IsDedekindDomain.HeightOneSpectrum.valuation_of_unit_mod_eq, QuotientGroup.instIsTopologicalGroup, QuotientGroup.ker_mk', QuotientGroup.eq_one_iff, QuotientGroup.lift_quot_mk, Subgroup.commProb_quotient_le, QuotientGroup.strictMono_comap_prod_map, groupCohomology.H1InfRes_f, QuotientGroup.quotientBot_symm_apply, QuotientGroup.mk_div, QuotientGroup.le_comap_mk', nilpotent_quotient_of_nilpotent, ValuationSubring.unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk, instSMulCommClassQuotientSubgroupSubtypeMemSubalgebraSubalgebra, Subgroup.Characteristic.comap_quotient_mk, ClassGroup.mk_def, QuotientGroup.sound, groupHomology.mapCycles₁_quotientGroupMk'_epi, IsZGroup.instQuotientSubgroupOfFinite, Subgroup.goursat, ClassGroup.equiv_mk, IsDedekindDomain.selmerGroup.valuation_ker_eq, Group.exponent_quotient_dvd, Submodule.unitsQuotEquivRelPic_apply_coe, QuotientGroup.quotientMulEquivOfEq_mk, Rep.quotientToCoinvariantsFunctor_obj_V

Subgroup

Definitions

NameCategoryTheorems
orderIsoCon πŸ“–CompOp
2 mathmath: orderIsoCon_apply, orderIsoCon_symm_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
orderIsoCon_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Subgroup
Normal
Con
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Con.instLE
RelIso.instFunLike
orderIsoCon
QuotientGroup.con
β€”β€”
orderIsoCon_symm_apply_coe πŸ“–mathematicalβ€”Subgroup
Normal
DFunLike.coe
RelIso
Con
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Con.instLE
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RelIso.instFunLike
RelIso.symm
orderIsoCon
Con.subgroup
β€”β€”

---

← Back to Index