| Name | Category | Theorems |
equivProd π | CompOp | β |
inl π | CompOp | 4 mathmath: left_inl, fun_id, right_inl, rightHom_comp_inl_eq_id
|
instGroup π | CompOp | 6 mathmath: left_inl, toPermInj, fun_id, right_inl, rightHom_eq_right, rightHom_comp_inl_eq_id
|
instInhabited π | CompOp | β |
instInv π | CompOp | 2 mathmath: inv_left, inv_right
|
instMul π | CompOp | 3 mathmath: mul_right, mul_def, mul_left
|
instMulActionProd π | CompOp | β |
instOne π | CompOp | 2 mathmath: one_right, one_left
|
instSMulProd π | CompOp | 2 mathmath: smul_def, instFaithfulSMulProdOfNonempty
|
left π | CompOp | 7 mathmath: ext_iff, smul_def, left_inl, inv_left, one_left, mul_def, mul_left
|
right π | CompOp | 10 mathmath: ext_iff, smul_def, inv_left, right_inl, one_right, rightHom_eq_right, inv_right, mul_right, mul_def, mul_left
|
rightHom π | CompOp | 3 mathmath: fun_id, rightHom_eq_right, rightHom_comp_inl_eq_id
|
toPerm π | CompOp | 1 mathmath: toPermInj
|