Documentation Verification Report

RegularWreathProduct

πŸ“ Source: Mathlib/GroupTheory/RegularWreathProduct.lean

Statistics

MetricCount
DefinitionsIteratedWreathProduct, RegularWreathProduct, equivProd, inl, instGroup, instInhabited, instInv, instMul, instMulActionProd, instOne, instSMulProd, left, right, rightHom, toPerm, mulEquivIteratedWreathProduct, instGroupIteratedWreathProduct, iteratedWreathToPermHom, Β«term_≀ᡣ_Β»
19
Theoremscard, IteratedWreathProduct_succ, IteratedWreathProduct_zero, card, ext, ext_iff, fun_id, instFaithfulSMulProdOfNonempty, instFinite, inv_left, inv_right, left_inl, mul_def, mul_left, mul_right, one_left, one_right, rightHom_comp_inl_eq_id, rightHom_eq_right, right_inl, smul_def, toPermInj, instFiniteIteratedWreathProduct, iteratedWreathToPermHomInj
24
Total43

IteratedWreathProduct

Theorems

NameKindAssumesProvesValidatesDepends On
card πŸ“–mathematicalβ€”Nat.card
IteratedWreathProduct
Monoid.toNatPow
Nat.instMonoid
Finset.sum
Nat.instAddCommMonoid
Finset.range
β€”Nat.card_eq_fintype_card
Fintype.card_unique
pow_zero
IteratedWreathProduct_succ
RegularWreathProduct.card
geom_sum_succ
pow_succ
pow_mul'

RegularWreathProduct

Definitions

NameCategoryTheorems
equivProd πŸ“–CompOpβ€”
inl πŸ“–CompOp
4 mathmath: left_inl, fun_id, right_inl, rightHom_comp_inl_eq_id
instGroup πŸ“–CompOp
6 mathmath: left_inl, toPermInj, fun_id, right_inl, rightHom_eq_right, rightHom_comp_inl_eq_id
instInhabited πŸ“–CompOpβ€”
instInv πŸ“–CompOp
2 mathmath: inv_left, inv_right
instMul πŸ“–CompOp
3 mathmath: mul_right, mul_def, mul_left
instMulActionProd πŸ“–CompOpβ€”
instOne πŸ“–CompOp
2 mathmath: one_right, one_left
instSMulProd πŸ“–CompOp
2 mathmath: smul_def, instFaithfulSMulProdOfNonempty
left πŸ“–CompOp
7 mathmath: ext_iff, smul_def, left_inl, inv_left, one_left, mul_def, mul_left
right πŸ“–CompOp
10 mathmath: ext_iff, smul_def, inv_left, right_inl, one_right, rightHom_eq_right, inv_right, mul_right, mul_def, mul_left
rightHom πŸ“–CompOp
3 mathmath: fun_id, rightHom_eq_right, rightHom_comp_inl_eq_id
toPerm πŸ“–CompOp
1 mathmath: toPermInj

Theorems

NameKindAssumesProvesValidatesDepends On
card πŸ“–mathematicalβ€”Nat.card
RegularWreathProduct
Monoid.toNatPow
Nat.instMonoid
β€”Nat.card_congr
Nat.card_prod
Nat.card_fun
ext πŸ“–β€”left
right
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”left
right
β€”ext
fun_id πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
RegularWreathProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
rightHom
inl
β€”β€”
instFaithfulSMulProdOfNonempty πŸ“–mathematicalβ€”FaithfulSMul
RegularWreathProduct
instSMulProd
β€”RightCancelSemigroup.toIsRightCancelMul
ext
FaithfulSMul.eq_of_smul_eq_smul
add_neg_cancel
zpow_zero
one_mul
instFinite πŸ“–mathematicalβ€”Finite
RegularWreathProduct
β€”Finite.of_equiv
Finite.instProd
Pi.finite
inv_left πŸ“–mathematicalβ€”left
RegularWreathProduct
instInv
Pi.instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
right
β€”β€”
inv_right πŸ“–mathematicalβ€”right
RegularWreathProduct
instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
left_inl πŸ“–mathematicalβ€”left
DFunLike.coe
MonoidHom
RegularWreathProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
inl
Pi.instOne
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
mul_def πŸ“–mathematicalβ€”RegularWreathProduct
instMul
Pi.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
left
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
right
β€”β€”
mul_left πŸ“–mathematicalβ€”left
RegularWreathProduct
instMul
Pi.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
right
β€”β€”
mul_right πŸ“–mathematicalβ€”right
RegularWreathProduct
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”β€”
one_left πŸ“–mathematicalβ€”left
RegularWreathProduct
instOne
Pi.instOne
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
one_right πŸ“–mathematicalβ€”right
RegularWreathProduct
instOne
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
rightHom_comp_inl_eq_id πŸ“–mathematicalβ€”MonoidHom.comp
RegularWreathProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
rightHom
inl
MonoidHom.id
β€”MonoidHom.ext
rightHom_eq_right πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
RegularWreathProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
rightHom
right
β€”β€”
right_inl πŸ“–mathematicalβ€”right
DFunLike.coe
MonoidHom
RegularWreathProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
inl
β€”β€”
smul_def πŸ“–mathematicalβ€”RegularWreathProduct
instSMulProd
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
left
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
right
β€”β€”
toPermInj πŸ“–mathematicalβ€”RegularWreathProduct
Equiv.Perm
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
Equiv.Perm.permGroup
MonoidHom.instFunLike
toPerm
β€”MulAction.toPerm_injective
instFaithfulSMulProdOfNonempty
One.instNonempty

Sylow

Definitions

NameCategoryTheorems
mulEquivIteratedWreathProduct πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
IteratedWreathProduct πŸ“–CompOp
5 mathmath: IteratedWreathProduct.card, instFiniteIteratedWreathProduct, iteratedWreathToPermHomInj, IteratedWreathProduct_succ, IteratedWreathProduct_zero
RegularWreathProduct πŸ“–CompData
18 mathmath: RegularWreathProduct.card, RegularWreathProduct.smul_def, RegularWreathProduct.instFinite, RegularWreathProduct.left_inl, RegularWreathProduct.toPermInj, RegularWreathProduct.fun_id, RegularWreathProduct.inv_left, RegularWreathProduct.right_inl, RegularWreathProduct.one_right, RegularWreathProduct.rightHom_eq_right, RegularWreathProduct.rightHom_comp_inl_eq_id, RegularWreathProduct.one_left, RegularWreathProduct.inv_right, RegularWreathProduct.mul_right, RegularWreathProduct.mul_def, IteratedWreathProduct_succ, RegularWreathProduct.mul_left, RegularWreathProduct.instFaithfulSMulProdOfNonempty
instGroupIteratedWreathProduct πŸ“–CompOp
1 mathmath: iteratedWreathToPermHomInj
iteratedWreathToPermHom πŸ“–CompOp
1 mathmath: iteratedWreathToPermHomInj
Β«term_≀ᡣ_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
IteratedWreathProduct_succ πŸ“–mathematicalβ€”IteratedWreathProduct
RegularWreathProduct
β€”β€”
IteratedWreathProduct_zero πŸ“–mathematicalβ€”IteratedWreathProductβ€”β€”
instFiniteIteratedWreathProduct πŸ“–mathematicalβ€”Finite
IteratedWreathProduct
β€”IteratedWreathProduct_zero
Finite.of_fintype
IteratedWreathProduct_succ
RegularWreathProduct.instFinite
iteratedWreathToPermHomInj πŸ“–mathematicalβ€”IteratedWreathProduct
Equiv.Perm
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroupIteratedWreathProduct
Equiv.Perm.permGroup
MonoidHom.instFunLike
iteratedWreathToPermHom
β€”Function.injective_of_subsingleton
Equiv.ext
Equiv.comp_injective
RegularWreathProduct.toPermInj
One.instNonempty

---

← Back to Index