Documentation Verification Report

Schreier

📁 Source: Mathlib/GroupTheory/Schreier.lean

Statistics

MetricCount
DefinitionscardCommutatorBound
1
Theoremscard_commutator_dvd_index_center_pow, card_commutator_le_of_finite_commutatorSet, closure_mul_image_eq, closure_mul_image_eq_top, closure_mul_image_eq_top', closure_mul_image_mul_eq_top, exists_finset_card_le_mul, fg_of_index_ne_zero, instFiniteSubtypeMemCommutatorOfElemCommutatorSet, rank_le_index_mul_rank, card_dvd_exponent_nsmul_rank, card_dvd_exponent_nsmul_rank', card_dvd_exponent_pow_rank, card_dvd_exponent_pow_rank'
14
Total15

Subgroup

Definitions

NameCategoryTheorems
cardCommutatorBound 📖CompOp
1 mathmath: card_commutator_le_of_finite_commutatorSet

Theorems

NameKindAssumesProvesValidatesDepends On
card_commutator_dvd_index_center_pow 📖mathematicalNat.card
Subgroup
SetLike.instMembership
instSetLike
commutator
Monoid.toNatPow
Nat.instMonoid
index
center
Set.Elem
commutatorSet
MulZeroClass.zero_mul
zero_add
pow_one
card_mul_index
pow_succ
relIndex_dvd_index_of_normal
instNormalCenter
mul_dvd_mul
fg_of_index_ne_zero
instFGSubtypeMemCommutator
ne_zero_of_dvd_ne_zero
rank_le_index_mul_rank
rank_commutator_le_card
dvd_trans
card_dvd_exponent_pow_rank'
subgroupOf_isMulCommutative
center.isMulCommutative
Abelianization.commutator_subset_ker
pow_dvd_pow
LE.le.trans
card_commutator_le_of_finite_commutatorSet 📖mathematicalNat.card
Subgroup
SetLike.instMembership
instSetLike
commutator
cardCommutatorBound
Set.Elem
commutatorSet
closureCommutatorRepresentatives_fg
index_center_le_pow
instFiniteElemSubtypeMemSubgroupClosureCommutatorRepresentativesCommutatorSet
card_commutator_dvd_index_center_pow
LE.le.trans
card_commutatorSet_closureCommutatorRepresentatives
Finite.card_pos
instNonemptyElemCommutatorSet
rank_closureCommutatorRepresentatives_le
Dvd.dvd.trans
card_commutator_closureCommutatorRepresentatives
pow_dvd_pow
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
Nat.instMulLeftMono
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
FiniteIndex.index_ne_zero
finiteIndex_center
pow_succ
closure_mul_image_eq 📖mathematicalIsComplement
SetLike.coe
Subgroup
instSetLike
Set
Set.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
closure
Top.top
instTop
Set.image
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
IsComplement.toRightFun
Set.mul
closure_le
IsComplement.mul_inv_toRightFun_mem
le_antisymm
eq_top_iff
closure_mul_image_mul_eq_top
mem_top
ExistsUnique.unique
isComplement_iff_existsUnique_mul_inv_mem
mul_inv_cancel
one_mem
inv_one
mul_one
mul_mem_cancel_left
closure_mul_image_eq_top 📖mathematicalIsComplement
SetLike.coe
Subgroup
instSetLike
Set
Set.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
closure
Top.top
instTop
SetLike.instMembership
toGroup
Set.image
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
IsComplement.toRightFun
IsComplement.mul_inv_toRightFun_mem
Set.mul
IsComplement.mul_inv_toRightFun_mem
eq_top_iff
map_subtype_le_map_subtype
MonoidHom.map_closure
Set.image_image
LE.le.trans
map_subtype_le
ge_of_eq
closure_mul_image_eq
closure_mul_image_eq_top' 📖mathematicalIsComplement
SetLike.coe
Subgroup
instSetLike
Finset
Finset.instSetLike
Finset.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
closure
Top.top
instTop
SetLike.instMembership
toGroup
Finset.image
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
Set
Set.instMembership
IsComplement.toRightFun
IsComplement.mul_inv_toRightFun_mem
Finset.mul
IsComplement.mul_inv_toRightFun_mem
Finset.coe_image
Finset.coe_mul
closure_mul_image_eq_top
closure_mul_image_mul_eq_top 📖mathematicalIsComplement
SetLike.coe
Subgroup
instSetLike
Set
Set.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
closure
Top.top
instTop
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set.image
InvOneClass.toInv
IsComplement.toRightFun
BooleanAlgebra.toTop
Set.instBooleanAlgebra
top_le_iff
closure_induction_right
one_mem
one_mul
Mathlib.Tactic.Group.zpow_trick_one'
neg_add_cancel
zpow_zero
mul_one
Set.mul_mem_mul
mul_mem
subset_closure
Subtype.coe_prop
mul_zpow_neg_one
neg_neg
zpow_one
inv_mem
LeftCancelSemigroup.toIsLeftCancelMul
ExistsUnique.unique
isComplement_iff_existsUnique_mul_inv_mem
IsComplement.mul_inv_toRightFun_mem
mul_assoc
inv_inv
mul_inv_rev
IsComplement.toRightFun_mul_inv_mem
eq_top_iff
mem_top
exists_finset_card_le_mul 📖mathematicalclosure
SetLike.coe
Finset
Finset.instSetLike
Top.top
Subgroup
instTop
Finset.card
SetLike.instMembership
instSetLike
index
toGroup
exists_isComplement_right
Set.coe_toFinset
Set.mem_toFinset
IsComplement.mul_inv_toRightFun_mem
Finset.card_image_le
Finset.card_mul_le
Fintype.card_coe
Fintype.card_congr
QuotientGroup.card_quotient_rightRel
index_eq_card
Nat.card_eq_fintype_card
closure_mul_image_eq_top'
fg_of_index_ne_zero 📖mathematicalGroup.FG
Subgroup
SetLike.instMembership
instSetLike
toGroup
Group.FG.out
exists_finset_card_le_mul
instFiniteSubtypeMemCommutatorOfElemCommutatorSet 📖mathematicalFinite
Subgroup
SetLike.instMembership
instSetLike
commutator
card_commutator_dvd_index_center_pow
instFiniteElemSubtypeMemSubgroupClosureCommutatorRepresentativesCommutatorSet
Nat.finite_of_card_ne_zero
FiniteIndex.index_ne_zero
finiteIndex_center
closureCommutatorRepresentatives_fg
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
Nat.instIsDomain
zero_dvd_iff
card_commutator_closureCommutatorRepresentatives
rank_le_index_mul_rank 📖mathematicalGroup.rank
Subgroup
SetLike.instMembership
instSetLike
toGroup
fg_of_index_ne_zero
index
fg_of_index_ne_zero
Group.rank_spec
exists_finset_card_le_mul
Group.rank_le

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
card_dvd_exponent_nsmul_rank 📖mathematicalNat.card
Monoid.toNatPow
Nat.instMonoid
AddMonoid.exponent
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddGroup.rank
AddGroup.rank_spec
Fintype.card_coe
Finset.card_univ
Finset.prod_const
add_comm
AddMonoidHom.range_eq_top
eq_top_iff
AddSubgroup.closure_le
AddSubgroup.mem_zmultiples
AddSubgroup.noncommPiCoprod_single
AddSubgroup.card_dvd_of_surjective
Dvd.dvd.trans
Nat.card_pi
Finset.prod_dvd_prod_of_dvd
Nat.card_zmultiples
AddMonoid.addOrder_dvd_exponent
card_dvd_exponent_nsmul_rank' 📖mathematicalAddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Nat.card
Monoid.toNatPow
Nat.instMonoid
AddGroup.rank
Dvd.dvd.trans
card_dvd_exponent_nsmul_rank
pow_dvd_pow_of_dvd
AddMonoid.exponent_dvd_of_forall_nsmul_eq_zero
card_dvd_exponent_pow_rank 📖mathematicalNat.card
Monoid.toNatPow
Nat.instMonoid
Monoid.exponent
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Group.rank
Group.rank_spec
Fintype.card_coe
Finset.card_univ
Finset.prod_const
mul_comm
MonoidHom.range_eq_top
eq_top_iff
Subgroup.closure_le
Subgroup.mem_zpowers
Subgroup.noncommPiCoprod_mulSingle
Subgroup.card_dvd_of_surjective
Dvd.dvd.trans
Nat.card_pi
Finset.prod_dvd_prod_of_dvd
Nat.card_zpowers
Monoid.order_dvd_exponent
card_dvd_exponent_pow_rank' 📖mathematicalMonoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Nat.card
Nat.instMonoid
Group.rank
Dvd.dvd.trans
card_dvd_exponent_pow_rank
pow_dvd_pow_of_dvd
Monoid.exponent_dvd_of_forall_pow_eq_one

---

← Back to Index