Documentation Verification Report

SchurZassenhaus

📁 Source: Mathlib/GroupTheory/SchurZassenhaus.lean

Statistics

MetricCount
DefinitionsQuotientDiff, instInhabitedQuotientDiff, instMulActionQuotientDiff
3
Theoremsstep7, eq_one_of_smul_eq_one, exists_left_complement'_of_coprime, exists_right_complement'_of_coprime, exists_smul_eq, isComplement'_stabilizer_of_coprime, smul_diff', smul_diff_smul'
8
Total11

Subgroup

Definitions

NameCategoryTheorems
QuotientDiff 📖CompOp
2 mathmath: exists_smul_eq, isComplement'_stabilizer_of_coprime
instInhabitedQuotientDiff 📖CompOp
instMulActionQuotientDiff 📖CompOp
2 mathmath: exists_smul_eq, isComplement'_stabilizer_of_coprime

Theorems

NameKindAssumesProvesValidatesDepends On
eq_one_of_smul_eq_one 📖mathematicalNat.card
Subgroup
SetLike.instMembership
instSetLike
index
QuotientDiff
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toGroup
MulAction.toSemigroupAction
instMulAction
instMulActionQuotientDiff
oneQuotient.inductionOn'
Equiv.injective
MulAction.right_quotientAction'
leftTransversals.diff_inv
smul_diff'
leftTransversals.diff_self
one_mul
inv_pow
inv_inv
Quotient.exact'
one_pow
exists_left_complement'_of_coprime 📖mathematicalNat.card
Subgroup
SetLike.instMembership
instSetLike
index
IsComplement'IsComplement'.symm
exists_right_complement'_of_coprime
exists_right_complement'_of_coprime 📖mathematicalNat.card
Subgroup
SetLike.instMembership
instSetLike
index
IsComplement'index_eq_one
isComplement'_top_bot
Nat.card_eq_one_iff_unique
eq_bot_of_subsingleton
isComplement'_bot_top
Nat.finite_of_card_ne_zero
card_mul_index
mul_ne_zero
IsDomain.to_noZeroDivisors
Nat.instIsDomain
exists_smul_eq 📖mathematicalNat.card
Subgroup
SetLike.instMembership
instSetLike
index
QuotientDiff
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toGroup
MulAction.toSemigroupAction
instMulAction
instMulActionQuotientDiff
Quotient.inductionOn'
MulAction.right_quotientAction'
Quotient.sound'
leftTransversals.diff_inv
inv_eq_one
smul_diff'
inv_pow
powCoprime_apply
Equiv.apply_symm_apply
mul_inv_cancel
isComplement'_stabilizer_of_coprime 📖mathematicalNat.card
Subgroup
SetLike.instMembership
instSetLike
index
IsComplement'
MulAction.stabilizer
QuotientDiff
instMulActionQuotientDiff
isComplement'_stabilizer
eq_one_of_smul_eq_one
exists_smul_eq
smul_diff' 📖mathematicalleftTransversals.diff
Subgroup
SetLike.instMembership
instSetLike
CommGroup.ofIsMulCommutative
toGroup
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulOpposite
LeftTransversal
SemigroupAction.toSMul
Monoid.toSemigroup
MulOpposite.instMonoid
MulAction.toSemigroupAction
instMulActionLeftTransversal
MulOpposite.instGroup
Monoid.toOppositeMulAction
MulAction.right_quotientAction'
MulOpposite.op
mul
npow
index
MulAction.right_quotientAction'
leftTransversals.diff.eq_1
index_eq_card
Nat.card_eq_fintype_card
Finset.card_univ
Finset.prod_const
Finset.prod_mul_distrib
Finset.prod_congr
mul_assoc
LeftCancelSemigroup.toIsLeftCancelMul
smul_apply_eq_smul_apply_inv_smul
MulOpposite.smul_eq_mul_unop
MulOpposite.unop_op
RightCancelSemigroup.toIsRightCancelMul
Equiv.apply_eq_iff_eq
inv_smul_eq_iff
left_eq_mul
QuotientGroup.eq_one_iff
smul_diff_smul' 📖mathematicalleftTransversals.diff
Subgroup
SetLike.instMembership
instSetLike
CommGroup.ofIsMulCommutative
toGroup
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulOpposite
LeftTransversal
SemigroupAction.toSMul
Monoid.toSemigroup
MulOpposite.instMonoid
MulAction.toSemigroupAction
instMulActionLeftTransversal
MulOpposite.instGroup
Monoid.toOppositeMulAction
MulAction.right_quotientAction'
MulOne.toMul
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
MulOpposite.unop
Normal.mem_comm
DivInvMonoid.toInv
mul_inv_cancel_left
SetLike.coe_mem
Normal.mem_comm
mul_inv_cancel_left
SetLike.coe_mem
coe_one
mul_one
inv_mul_cancel
mul_assoc
MulAction.right_quotientAction'
Fintype.prod_equiv
smul_apply_eq_smul_apply_inv_smul
mul_inv_rev
map_prod
MonoidHom.instMonoidHomClass

Subgroup.SchurZassenhausInduction

Theorems

NameKindAssumesProvesValidatesDepends On
step7 📖mathematicalNat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.index
Subgroup.IsComplement'
IsMulCommutative
Subgroup.mul
Commute.symm
IsMulCentral.comm
eq_top_iff
ConjAct.normal_of_characteristic_of_normal
Subgroup.centerCharacteristic
LT.lt.ne'
IsPGroup.bot_lt_center
Subgroup.bot_or_nontrivial
Subgroup.instFiniteSubtypeMem
Subgroup.mem_top

---

← Back to Index