| Name | Category | Theorems |
congr' π | CompOp | 4 mathmath: congr'_apply_right, congr'_apply_left, congr'_symm_apply_right, congr'_symm_apply_left
|
equivProd π | CompOp | 3 mathmath: equivProd_apply, equivProd_symm_apply_left, equivProd_symm_apply_right
|
inl π | CompOp | 17 mathmath: rightHom_inl, inl_aut, inl_left_mul_inr_right, map_comp_inl, left_inl, inl_aut_inv, lift_inl, lift_comp_inl, map_inl, rightHom_comp_inl, inl_inj, toGroupExtension_inl, lift_unique, range_inl_eq_ker_rightHom, right_inl, mk_eq_inl_mul_inr, inl_injective
|
inr π | CompOp | 15 mathmath: inl_aut, inr_injective, inr_inj, inl_left_mul_inr_right, lift_inr, rightHom_comp_inr, inl_aut_inv, right_inr, rightHom_inr, map_inr, lift_comp_inr, lift_unique, map_comp_inr, mk_eq_inl_mul_inr, left_inr
|
instGroup π | CompOp | 38 mathmath: rightHom_inl, inl_aut, inr_injective, inr_inj, inl_left_mul_inr_right, lift_inr, map_comp_inl, rightHom_comp_inr, rightHom_surjective, left_inl, inl_aut_inv, right_inr, lift_inl, CategoryTheory.ActionCategory.curry_apply_left, lift_comp_inl, rightHom_eq_right, map_left, rightHom_inr, map_inl, map_inr, rightHom_comp_inl, lift_comp_inr, inl_inj, map_right, toGroupExtension_inl, mulEquivSubgroup_symm_apply, lift_unique, CategoryTheory.ActionCategory.curry_apply_right, map_comp_inr, range_inl_eq_ker_rightHom, right_inl, toGroupExtension_rightHom, mk_eq_inl_mul_inr, right_splitting, left_inr, inl_injective, rightHom_comp_map, monoidHomSubgroup_apply
|
instInhabited π | CompOp | β |
instInv π | CompOp | 2 mathmath: inv_left, inv_right
|
instMul π | CompOp | 20 mathmath: congr_symm_apply_left, inl_aut, inl_left_mul_inr_right, congr'_apply_right, congr'_apply_left, congr'_symm_apply_right, mul_def, inl_aut_inv, mulEquivProd_symm_apply_left, congr_symm_apply_right, congr'_symm_apply_left, congr_apply_left, congr_apply_right, mulEquivSubgroup_apply, mul_right, mulEquivProd_apply, mulEquivSubgroup_symm_apply, mulEquivProd_symm_apply_right, mul_left, mk_eq_inl_mul_inr
|
instOne π | CompOp | 2 mathmath: one_left, one_right
|
left π | CompOp | 21 mathmath: congr_symm_apply_left, one_left, inl_left_mul_inr_right, CategoryTheory.ActionCategory.uncurry_map, congr'_apply_left, mul_def, left_inl, mulEquivProd_symm_apply_left, CategoryTheory.ActionCategory.curry_apply_left, equivProd_apply, map_left, congr'_symm_apply_left, congr_apply_left, inv_left, mulEquivSubgroup_apply, mulEquivProd_apply, mul_left, left_inr, equivProd_symm_apply_left, monoidHomSubgroup_apply, ext_iff
|
map π | CompOp | 7 mathmath: map_comp_inl, map_left, map_inl, map_inr, map_right, map_comp_inr, rightHom_comp_map
|
monoidHomSubgroup π | CompOp | 2 mathmath: mulEquivSubgroup_symm_apply, monoidHomSubgroup_apply
|
mulEquivProd π | CompOp | 3 mathmath: mulEquivProd_symm_apply_left, mulEquivProd_apply, mulEquivProd_symm_apply_right
|
mulEquivSubgroup π | CompOp | 2 mathmath: mulEquivSubgroup_apply, mulEquivSubgroup_symm_apply
|
right π | CompOp | 24 mathmath: inl_left_mul_inr_right, congr'_apply_right, congr'_symm_apply_right, mul_def, one_right, right_inr, equivProd_apply, rightHom_eq_right, congr_symm_apply_right, congr_apply_right, map_right, inv_left, mulEquivSubgroup_apply, mul_right, inv_right, mulEquivProd_apply, mulEquivProd_symm_apply_right, CategoryTheory.ActionCategory.curry_apply_right, right_inl, mul_left, right_splitting, monoidHomSubgroup_apply, equivProd_symm_apply_right, ext_iff
|
rightHom π | CompOp | 9 mathmath: rightHom_inl, rightHom_comp_inr, rightHom_surjective, rightHom_eq_right, rightHom_inr, rightHom_comp_inl, range_inl_eq_ker_rightHom, toGroupExtension_rightHom, rightHom_comp_map
|