Documentation Verification Report

SemidirectProduct

πŸ“ Source: Mathlib/GroupTheory/SemidirectProduct.lean

Statistics

MetricCount
DefinitionsSemidirectProduct, congr', equivProd, inl, inr, instGroup, instInhabited, instInv, instMul, instOne, left, map, monoidHomSubgroup, mulEquivProd, mulEquivSubgroup, right, rightHom, instDecidableEqSemidirectProduct, decEq, Β«term_β‹Š[_]_Β»
20
Theoremscard, congr'_apply_left, congr'_apply_right, congr'_symm_apply_left, congr'_symm_apply_right, congr_apply_left, congr_apply_right, congr_symm_apply_left, congr_symm_apply_right, equivProd_apply, equivProd_symm_apply_left, equivProd_symm_apply_right, ext, ext_iff, hom_ext, inl_aut, inl_aut_inv, inl_inj, inl_injective, inl_left_mul_inr_right, inr_inj, inr_injective, inv_left, inv_right, left_inl, left_inr, lift_comp_inl, lift_comp_inr, lift_inl, lift_inr, lift_unique, map_comp_inl, map_comp_inr, map_inl, map_inr, map_left, map_right, mk_eq_inl_mul_inr, monoidHomSubgroup_apply, mulEquivProd_apply, mulEquivProd_symm_apply_left, mulEquivProd_symm_apply_right, mulEquivSubgroup_apply, mulEquivSubgroup_symm_apply, mul_def, mul_left, mul_right, one_left, one_right, range_inl_eq_ker_rightHom, rightHom_comp_inl, rightHom_comp_inr, rightHom_comp_map, rightHom_eq_right, rightHom_inl, rightHom_inr, rightHom_surjective, right_inl, right_inr
59
Total79

SemidirectProduct

Definitions

NameCategoryTheorems
congr' πŸ“–CompOp
4 mathmath: congr'_apply_right, congr'_apply_left, congr'_symm_apply_right, congr'_symm_apply_left
equivProd πŸ“–CompOp
3 mathmath: equivProd_apply, equivProd_symm_apply_left, equivProd_symm_apply_right
inl πŸ“–CompOp
17 mathmath: rightHom_inl, inl_aut, inl_left_mul_inr_right, map_comp_inl, left_inl, inl_aut_inv, lift_inl, lift_comp_inl, map_inl, rightHom_comp_inl, inl_inj, toGroupExtension_inl, lift_unique, range_inl_eq_ker_rightHom, right_inl, mk_eq_inl_mul_inr, inl_injective
inr πŸ“–CompOp
15 mathmath: inl_aut, inr_injective, inr_inj, inl_left_mul_inr_right, lift_inr, rightHom_comp_inr, inl_aut_inv, right_inr, rightHom_inr, map_inr, lift_comp_inr, lift_unique, map_comp_inr, mk_eq_inl_mul_inr, left_inr
instGroup πŸ“–CompOp
38 mathmath: rightHom_inl, inl_aut, inr_injective, inr_inj, inl_left_mul_inr_right, lift_inr, map_comp_inl, rightHom_comp_inr, rightHom_surjective, left_inl, inl_aut_inv, right_inr, lift_inl, CategoryTheory.ActionCategory.curry_apply_left, lift_comp_inl, rightHom_eq_right, map_left, rightHom_inr, map_inl, map_inr, rightHom_comp_inl, lift_comp_inr, inl_inj, map_right, toGroupExtension_inl, mulEquivSubgroup_symm_apply, lift_unique, CategoryTheory.ActionCategory.curry_apply_right, map_comp_inr, range_inl_eq_ker_rightHom, right_inl, toGroupExtension_rightHom, mk_eq_inl_mul_inr, right_splitting, left_inr, inl_injective, rightHom_comp_map, monoidHomSubgroup_apply
instInhabited πŸ“–CompOpβ€”
instInv πŸ“–CompOp
2 mathmath: inv_left, inv_right
instMul πŸ“–CompOp
20 mathmath: congr_symm_apply_left, inl_aut, inl_left_mul_inr_right, congr'_apply_right, congr'_apply_left, congr'_symm_apply_right, mul_def, inl_aut_inv, mulEquivProd_symm_apply_left, congr_symm_apply_right, congr'_symm_apply_left, congr_apply_left, congr_apply_right, mulEquivSubgroup_apply, mul_right, mulEquivProd_apply, mulEquivSubgroup_symm_apply, mulEquivProd_symm_apply_right, mul_left, mk_eq_inl_mul_inr
instOne πŸ“–CompOp
2 mathmath: one_left, one_right
left πŸ“–CompOp
21 mathmath: congr_symm_apply_left, one_left, inl_left_mul_inr_right, CategoryTheory.ActionCategory.uncurry_map, congr'_apply_left, mul_def, left_inl, mulEquivProd_symm_apply_left, CategoryTheory.ActionCategory.curry_apply_left, equivProd_apply, map_left, congr'_symm_apply_left, congr_apply_left, inv_left, mulEquivSubgroup_apply, mulEquivProd_apply, mul_left, left_inr, equivProd_symm_apply_left, monoidHomSubgroup_apply, ext_iff
map πŸ“–CompOp
7 mathmath: map_comp_inl, map_left, map_inl, map_inr, map_right, map_comp_inr, rightHom_comp_map
monoidHomSubgroup πŸ“–CompOp
2 mathmath: mulEquivSubgroup_symm_apply, monoidHomSubgroup_apply
mulEquivProd πŸ“–CompOp
3 mathmath: mulEquivProd_symm_apply_left, mulEquivProd_apply, mulEquivProd_symm_apply_right
mulEquivSubgroup πŸ“–CompOp
2 mathmath: mulEquivSubgroup_apply, mulEquivSubgroup_symm_apply
right πŸ“–CompOp
24 mathmath: inl_left_mul_inr_right, congr'_apply_right, congr'_symm_apply_right, mul_def, one_right, right_inr, equivProd_apply, rightHom_eq_right, congr_symm_apply_right, congr_apply_right, map_right, inv_left, mulEquivSubgroup_apply, mul_right, inv_right, mulEquivProd_apply, mulEquivProd_symm_apply_right, CategoryTheory.ActionCategory.curry_apply_right, right_inl, mul_left, right_splitting, monoidHomSubgroup_apply, equivProd_symm_apply_right, ext_iff
rightHom πŸ“–CompOp
9 mathmath: rightHom_inl, rightHom_comp_inr, rightHom_surjective, rightHom_eq_right, rightHom_inr, rightHom_comp_inl, range_inl_eq_ker_rightHom, toGroupExtension_rightHom, rightHom_comp_map

Theorems

NameKindAssumesProvesValidatesDepends On
card πŸ“–mathematicalβ€”Nat.card
SemidirectProduct
β€”Nat.card_congr
Nat.card_prod
congr'_apply_left πŸ“–mathematicalβ€”left
MonoidHom.comp
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
MonoidHomClass.toMonoidHom
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
MulAut.congr
MulEquiv.symm
DFunLike.coe
SemidirectProduct
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
instMul
congr'
β€”MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
congr'_apply_right πŸ“–mathematicalβ€”right
MonoidHom.comp
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
MonoidHomClass.toMonoidHom
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
MulAut.congr
MulEquiv.symm
DFunLike.coe
SemidirectProduct
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
instMul
congr'
β€”MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
congr'_symm_apply_left πŸ“–mathematicalβ€”left
DFunLike.coe
MulEquiv
SemidirectProduct
MonoidHom.comp
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
MonoidHomClass.toMonoidHom
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
MulAut.congr
MulEquiv.symm
instMul
congr'
β€”MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
congr'_symm_apply_right πŸ“–mathematicalβ€”right
DFunLike.coe
MulEquiv
SemidirectProduct
MonoidHom.comp
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
MonoidHomClass.toMonoidHom
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
MulAut.congr
MulEquiv.symm
instMul
congr'
β€”MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
congr_apply_left πŸ“–mathematicalMulEquiv.trans
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MonoidHom
MulAut
MulAut.instGroup
MonoidHom.instFunLike
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
left
SemidirectProduct
instMul
congr
β€”β€”
congr_apply_right πŸ“–mathematicalMulEquiv.trans
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MonoidHom
MulAut
MulAut.instGroup
MonoidHom.instFunLike
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
right
SemidirectProduct
instMul
congr
β€”β€”
congr_symm_apply_left πŸ“–mathematicalMulEquiv.trans
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MonoidHom
MulAut
MulAut.instGroup
MonoidHom.instFunLike
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
left
SemidirectProduct
instMul
MulEquiv.symm
congr
β€”β€”
congr_symm_apply_right πŸ“–mathematicalMulEquiv.trans
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MonoidHom
MulAut
MulAut.instGroup
MonoidHom.instFunLike
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
right
SemidirectProduct
instMul
MulEquiv.symm
congr
β€”β€”
equivProd_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SemidirectProduct
EquivLike.toFunLike
Equiv.instEquivLike
equivProd
left
right
β€”β€”
equivProd_symm_apply_left πŸ“–mathematicalβ€”left
DFunLike.coe
Equiv
SemidirectProduct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivProd
β€”β€”
equivProd_symm_apply_right πŸ“–mathematicalβ€”right
DFunLike.coe
Equiv
SemidirectProduct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivProd
β€”β€”
ext πŸ“–β€”left
right
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”left
right
β€”ext
hom_ext πŸ“–β€”MonoidHom.comp
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
inl
inr
β€”β€”lift_unique
lift.congr_simp
inl_aut πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
inl
MulEquiv
MulOne.toMul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulAut
MulAut.instGroup
instMul
inr
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”ext
map_inv
MonoidHom.instMonoidHomClass
one_mul
mul_one
inv_one
MulAut.inv_apply
map_one
MonoidHomClass.toOneHomClass
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
mul_inv_cancel
inl_aut_inv πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
inl
MulEquiv
MulOne.toMul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
MulAut.instGroup
instMul
inr
β€”map_inv
MonoidHom.instMonoidHomClass
inl_aut
inv_inv
inl_inj πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
inl
β€”inl_injective
inl_injective πŸ“–mathematicalβ€”SemidirectProduct
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
inl
β€”Function.injective_iff_hasLeftInverse
One.instNonempty
left_inl
inl_left_mul_inr_right πŸ“–mathematicalβ€”SemidirectProduct
instMul
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
inl
left
inr
right
β€”ext
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
mul_one
one_mul
inr_inj πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
inr
β€”inr_injective
inr_injective πŸ“–mathematicalβ€”SemidirectProduct
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
inr
β€”Function.injective_iff_hasLeftInverse
One.instNonempty
right_inr
inv_left πŸ“–mathematicalβ€”left
SemidirectProduct
instInv
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MonoidHom
MulAut
MulAut.instGroup
MonoidHom.instFunLike
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
right
β€”β€”
inv_right πŸ“–mathematicalβ€”right
SemidirectProduct
instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
left_inl πŸ“–mathematicalβ€”left
DFunLike.coe
MonoidHom
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
inl
β€”β€”
left_inr πŸ“–mathematicalβ€”left
DFunLike.coe
MonoidHom
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
inr
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
lift_comp_inl πŸ“–mathematicalMonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulEquiv.toMonoidHom
DFunLike.coe
MonoidHom
MulAut
MulOne.toMul
MulAut.instGroup
MonoidHom.instFunLike
MulAut.conj
SemidirectProduct
instGroup
lift
inl
β€”MonoidHom.ext
lift_inl
lift_comp_inr πŸ“–mathematicalMonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulEquiv.toMonoidHom
DFunLike.coe
MonoidHom
MulAut
MulOne.toMul
MulAut.instGroup
MonoidHom.instFunLike
MulAut.conj
SemidirectProduct
instGroup
lift
inr
β€”MonoidHom.ext
lift_inr
lift_inl πŸ“–mathematicalMonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulEquiv.toMonoidHom
DFunLike.coe
MonoidHom
MulAut
MulOne.toMul
MulAut.instGroup
MonoidHom.instFunLike
MulAut.conj
SemidirectProduct
instGroup
lift
inl
β€”map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
mul_one
lift_inr πŸ“–mathematicalMonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulEquiv.toMonoidHom
DFunLike.coe
MonoidHom
MulAut
MulOne.toMul
MulAut.instGroup
MonoidHom.instFunLike
MulAut.conj
SemidirectProduct
instGroup
lift
inr
β€”map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
one_mul
lift_unique πŸ“–mathematicalβ€”lift
MonoidHom.comp
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
inl
inr
β€”DFunLike.ext_iff
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
inl_left_mul_inr_right
map_comp_inl πŸ“–mathematicalMonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulEquiv.toMonoidHom
DFunLike.coe
MonoidHom
MulAut
MulOne.toMul
MulAut.instGroup
MonoidHom.instFunLike
SemidirectProduct
instGroup
map
inl
β€”MonoidHom.ext
ext
map_inl
map_comp_inr πŸ“–mathematicalMonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulEquiv.toMonoidHom
DFunLike.coe
MonoidHom
MulAut
MulOne.toMul
MulAut.instGroup
MonoidHom.instFunLike
SemidirectProduct
instGroup
map
inr
β€”MonoidHom.ext
ext
mk_eq_inl_mul_inr
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
one_mul
map_inl πŸ“–mathematicalMonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulEquiv.toMonoidHom
DFunLike.coe
MonoidHom
MulAut
MulOne.toMul
MulAut.instGroup
MonoidHom.instFunLike
SemidirectProduct
instGroup
map
inl
β€”mk_eq_inl_mul_inr
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
mul_one
map_inr πŸ“–mathematicalMonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulEquiv.toMonoidHom
DFunLike.coe
MonoidHom
MulAut
MulOne.toMul
MulAut.instGroup
MonoidHom.instFunLike
SemidirectProduct
instGroup
map
inr
β€”mk_eq_inl_mul_inr
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
one_mul
map_left πŸ“–mathematicalMonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulEquiv.toMonoidHom
DFunLike.coe
MonoidHom
MulAut
MulOne.toMul
MulAut.instGroup
MonoidHom.instFunLike
left
SemidirectProduct
instGroup
map
β€”β€”
map_right πŸ“–mathematicalMonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulEquiv.toMonoidHom
DFunLike.coe
MonoidHom
MulAut
MulOne.toMul
MulAut.instGroup
MonoidHom.instFunLike
right
SemidirectProduct
instGroup
map
β€”β€”
mk_eq_inl_mul_inr πŸ“–mathematicalβ€”SemidirectProduct
instMul
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
inl
inr
β€”ext
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
mul_one
one_mul
monoidHomSubgroup_apply πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.normalizer
DFunLike.coe
MonoidHom
SemidirectProduct
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
MonoidHom.comp
MulAut
Subgroup.mul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
Subgroup.normalizerMonoidHom
Subgroup.inclusion
instGroup
MonoidHom.instFunLike
monoidHomSubgroup
MulOne.toMul
left
right
β€”β€”
mulEquivProd_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
SemidirectProduct
MonoidHom
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
instOneMonoidHom
instMul
Prod.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
mulEquivProd
left
right
β€”β€”
mulEquivProd_symm_apply_left πŸ“–mathematicalβ€”left
MonoidHom
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
instOneMonoidHom
DFunLike.coe
MulEquiv
SemidirectProduct
Prod.instMul
instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
mulEquivProd
β€”β€”
mulEquivProd_symm_apply_right πŸ“–mathematicalβ€”right
MonoidHom
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
instOneMonoidHom
DFunLike.coe
MulEquiv
SemidirectProduct
Prod.instMul
instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
mulEquivProd
β€”β€”
mulEquivSubgroup_apply πŸ“–mathematicalSubgroup.IsComplement'DFunLike.coe
MulEquiv
SemidirectProduct
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
MonoidHom.comp
Subgroup.normalizer
MulAut
Subgroup.mul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
Subgroup.normalizerMonoidHom
Subgroup.inclusion
Top.top
Subgroup.instTop
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
le_top
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
Subgroup.normalizer_eq_top
instMul
MulOne.toMul
EquivLike.toFunLike
MulEquiv.instEquivLike
mulEquivSubgroup
left
right
β€”le_top
Subgroup.normalizer_eq_top
mulEquivSubgroup_symm_apply πŸ“–mathematicalSubgroup.IsComplement'DFunLike.coe
MulEquiv
SemidirectProduct
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
MonoidHom.comp
Subgroup.normalizer
MulAut
Subgroup.mul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
Subgroup.normalizerMonoidHom
Subgroup.inclusion
Top.top
Subgroup.instTop
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
le_top
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
Subgroup.normalizer_eq_top
MulOne.toMul
instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
mulEquivSubgroup
Function.surjInv
MonoidHom
instGroup
MonoidHom.instFunLike
monoidHomSubgroup
Function.Bijective.surjective
β€”le_top
Subgroup.normalizer_eq_top
mul_def πŸ“–mathematicalβ€”SemidirectProduct
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
left
DFunLike.coe
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
MonoidHom
MulAut
MulAut.instGroup
MonoidHom.instFunLike
right
β€”β€”
mul_left πŸ“–mathematicalβ€”left
SemidirectProduct
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
MonoidHom
MulAut
MulAut.instGroup
MonoidHom.instFunLike
right
β€”β€”
mul_right πŸ“–mathematicalβ€”right
SemidirectProduct
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”β€”
one_left πŸ“–mathematicalβ€”left
SemidirectProduct
instOne
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
one_right πŸ“–mathematicalβ€”right
SemidirectProduct
instOne
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
range_inl_eq_ker_rightHom πŸ“–mathematicalβ€”MonoidHom.range
SemidirectProduct
instGroup
inl
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
rightHom
β€”le_antisymm
ext
rightHom_comp_inl πŸ“–mathematicalβ€”MonoidHom.comp
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
rightHom
inl
MonoidHom
instOneMonoidHom
β€”MonoidHom.ext
rightHom_comp_inr πŸ“–mathematicalβ€”MonoidHom.comp
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
rightHom
inr
MonoidHom.id
β€”MonoidHom.ext
rightHom_comp_map πŸ“–mathematicalMonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulEquiv.toMonoidHom
DFunLike.coe
MonoidHom
MulAut
MulOne.toMul
MulAut.instGroup
MonoidHom.instFunLike
SemidirectProduct
instGroup
rightHom
map
β€”β€”
rightHom_eq_right πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
rightHom
right
β€”β€”
rightHom_inl πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
rightHom
inl
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
rightHom_inr πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
rightHom
inr
β€”β€”
rightHom_surjective πŸ“–mathematicalβ€”SemidirectProduct
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
rightHom
β€”Function.surjective_iff_hasRightInverse
rightHom_inr
right_inl πŸ“–mathematicalβ€”right
DFunLike.coe
MonoidHom
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
inl
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
right_inr πŸ“–mathematicalβ€”right
DFunLike.coe
MonoidHom
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MonoidHom.instFunLike
inr
β€”β€”

(root)

Definitions

NameCategoryTheorems
SemidirectProduct πŸ“–CompData
61 mathmath: SemidirectProduct.rightHom_inl, SemidirectProduct.congr_symm_apply_left, SemidirectProduct.one_left, SemidirectProduct.inl_aut, SemidirectProduct.inr_injective, SemidirectProduct.inr_inj, SemidirectProduct.inl_left_mul_inr_right, SemidirectProduct.lift_inr, SemidirectProduct.congr'_apply_right, SemidirectProduct.card, SemidirectProduct.map_comp_inl, SemidirectProduct.rightHom_comp_inr, SemidirectProduct.congr'_apply_left, SemidirectProduct.congr'_symm_apply_right, SemidirectProduct.mul_def, SemidirectProduct.one_right, SemidirectProduct.rightHom_surjective, SemidirectProduct.left_inl, SemidirectProduct.inl_aut_inv, SemidirectProduct.mulEquivProd_symm_apply_left, SemidirectProduct.right_inr, SemidirectProduct.lift_inl, CategoryTheory.ActionCategory.curry_apply_left, SemidirectProduct.equivProd_apply, SemidirectProduct.lift_comp_inl, SemidirectProduct.rightHom_eq_right, SemidirectProduct.congr_symm_apply_right, SemidirectProduct.map_left, SemidirectProduct.congr'_symm_apply_left, SemidirectProduct.rightHom_inr, SemidirectProduct.map_inl, SemidirectProduct.congr_apply_left, SemidirectProduct.map_inr, SemidirectProduct.rightHom_comp_inl, SemidirectProduct.lift_comp_inr, SemidirectProduct.congr_apply_right, SemidirectProduct.inl_inj, SemidirectProduct.map_right, SemidirectProduct.inv_left, SemidirectProduct.mulEquivSubgroup_apply, SemidirectProduct.mul_right, SemidirectProduct.inv_right, SemidirectProduct.mulEquivProd_apply, SemidirectProduct.toGroupExtension_inl, SemidirectProduct.mulEquivSubgroup_symm_apply, SemidirectProduct.lift_unique, SemidirectProduct.mulEquivProd_symm_apply_right, CategoryTheory.ActionCategory.curry_apply_right, SemidirectProduct.map_comp_inr, SemidirectProduct.range_inl_eq_ker_rightHom, SemidirectProduct.right_inl, SemidirectProduct.toGroupExtension_rightHom, SemidirectProduct.mul_left, SemidirectProduct.mk_eq_inl_mul_inr, SemidirectProduct.right_splitting, SemidirectProduct.left_inr, SemidirectProduct.equivProd_symm_apply_left, SemidirectProduct.inl_injective, SemidirectProduct.rightHom_comp_map, SemidirectProduct.monoidHomSubgroup_apply, SemidirectProduct.equivProd_symm_apply_right
instDecidableEqSemidirectProduct πŸ“–CompOpβ€”
Β«term_β‹Š[_]_Β» πŸ“–CompOpβ€”

instDecidableEqSemidirectProduct

Definitions

NameCategoryTheorems
decEq πŸ“–CompOpβ€”

---

← Back to Index