Documentation Verification Report

Solvable

πŸ“ Source: Mathlib/GroupTheory/Solvable.lean

Statistics

MetricCount
DefinitionsIsSolvable, derivedSeries
2
TheoremsisSolvable, fin_5_not_solvable, not_solvable, comm_iff_isSolvable, derivedSeries_succ, commutator_lt_of_ne_bot, commutator_lt_top_of_nontrivial, solvable, derivedSeries_antitone, derivedSeries_characteristic, derivedSeries_le_map_derivedSeries, derivedSeries_normal, derivedSeries_one, derivedSeries_succ, derivedSeries_zero, isSolvable_def, isSolvable_iff_commutator_lt, isSolvable_of_comm, isSolvable_of_subsingleton, isSolvable_of_top_eq_bot, map_derivedSeries_eq, map_derivedSeries_le_derivedSeries, not_solvable_of_mem_derivedSeries, solvable_of_ker_le_range, solvable_of_solvable_injective, solvable_of_surjective, solvable_prod, solvable_quotient_of_solvable, subgroup_solvable_of_solvable
29
Total31

CommGroup

Theorems

NameKindAssumesProvesValidatesDepends On
isSolvable πŸ“–mathematicalβ€”IsSolvable
toGroup
β€”le_bot_iff
Abelianization.commutator_subset_ker

Equiv.Perm

Theorems

NameKindAssumesProvesValidatesDepends On
fin_5_not_solvable πŸ“–mathematicalβ€”IsSolvable
Equiv.Perm
permGroup
β€”not_solvable_of_mem_derivedSeries
Subgroup.mem_top
Subgroup.Normal.mem_comm_iff
derivedSeries_normal
inv_mul_cancel_left
Subgroup.commutator_mem_commutator
Subgroup.Normal.conj_mem
not_solvable πŸ“–mathematicalβ€”IsSolvable
Equiv.Perm
permGroup
β€”Nat.instAtLeastTwoHAddOfNat
Cardinal.lift_mk_le
Cardinal.mk_fin
Cardinal.lift_natCast
Cardinal.lift_id
fin_5_not_solvable
solvable_of_solvable_injective
viaEmbeddingHom_injective

IsSimpleGroup

Theorems

NameKindAssumesProvesValidatesDepends On
comm_iff_isSolvable πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
IsSolvable
β€”isSolvable_of_comm
Subgroup.mem_bot
Subgroup.mem_top
mul_inv_eq_one
mul_inv_rev
mul_assoc
derivedSeries_succ
commutator_eq_closure
Subgroup.subset_closure
derivedSeries_succ πŸ“–mathematicalβ€”derivedSeries
commutator
β€”derivedSeries_one
derivedSeries_succ
commutator.eq_1
Subgroup.Normal.eq_bot_or_eq_top
Subgroup.commutator_normal
Subgroup.normal_top
Subgroup.commutator_bot_left

IsSolvable

Theorems

NameKindAssumesProvesValidatesDepends On
commutator_lt_of_ne_bot πŸ“–mathematicalβ€”Subgroup
Preorder.toLT
PartialOrder.toPreorder
Subgroup.instPartialOrder
Bracket.bracket
Subgroup.commutator
β€”Subgroup.range_subtype
MonoidHom.range_eq_map
Subgroup.map_commutator
Subgroup.map_subtype_lt_map_subtype
commutator_lt_top_of_nontrivial
subgroup_solvable_of_solvable
Subgroup.nontrivial_iff_ne_bot
commutator_lt_top_of_nontrivial πŸ“–mathematicalβ€”Subgroup
Preorder.toLT
PartialOrder.toPreorder
Subgroup.instPartialOrder
commutator
Top.top
Subgroup.instTop
β€”lt_top_iff_ne_top
Mathlib.Tactic.Contrapose.contrapose₃
ne_of_eq_of_ne
derivedSeries_zero
derivedSeries_succ
top_ne_bot
Subgroup.instNontrivial
solvable πŸ“–mathematicalβ€”derivedSeries
Bot.bot
Subgroup
Subgroup.instBot
β€”β€”

(root)

Definitions

NameCategoryTheorems
IsSolvable πŸ“–CompData
33 mathmath: isSolvable_of_comm, solvable_of_ker_le_range, IsNilpotent.to_isSolvable, subgroup_solvable_of_solvable, solvable_of_surjective, gal_X_pow_isSolvable, solvable_prod, solvableByRad.isSolvable', IsSimpleGroup.comm_iff_isSolvable, gal_X_pow_sub_C_isSolvable, not_solvable_of_mem_derivedSeries, solvableByRad.isSolvable, gal_X_pow_sub_C_isSolvable_aux, gal_X_pow_sub_one_isSolvable, isSolvable_of_subsingleton, CommGroup.isSolvable, Equiv.Perm.not_solvable, isSolvable_of_top_eq_bot, solvable_of_solvable_injective, gal_C_isSolvable, isSolvable_of_isScalarTower, IsZGroup.instIsSolvableOfFinite, gal_X_sub_C_isSolvable, isSolvable_def, gal_one_isSolvable, Equiv.Perm.fin_5_not_solvable, solvable_quotient_of_solvable, gal_mul_isSolvable, isSolvable_iff_commutator_lt, gal_zero_isSolvable, gal_isSolvable_of_splits, gal_X_isSolvable, gal_isSolvable_tower
derivedSeries πŸ“–CompOp
13 mathmath: derivedSeries_le_map_derivedSeries, derivedSeries_zero, map_derivedSeries_eq, derivedSeries_succ, derivedSeries_antitone, map_derivedSeries_le_derivedSeries, IsSimpleGroup.derivedSeries_succ, derivedSeries_characteristic, isSolvable_def, derivedSeries_one, derived_le_lower_central, derivedSeries_normal, IsSolvable.solvable

Theorems

NameKindAssumesProvesValidatesDepends On
derivedSeries_antitone πŸ“–mathematicalβ€”Antitone
Subgroup
Nat.instPreorder
PartialOrder.toPreorder
Subgroup.instPartialOrder
derivedSeries
β€”antitone_nat_of_succ_le
Subgroup.commutator_le_self
derivedSeries_characteristic πŸ“–mathematicalβ€”Subgroup.Characteristic
derivedSeries
β€”Subgroup.topCharacteristic
Subgroup.commutator_characteristic
derivedSeries_le_map_derivedSeries πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
derivedSeries
Subgroup.map
β€”Eq.ge
Subgroup.map_top_of_surjective
Subgroup.commutator_le_map_commutator
derivedSeries_normal πŸ“–mathematicalβ€”Subgroup.Normal
derivedSeries
β€”Subgroup.normal_of_characteristic
Subgroup.topCharacteristic
Subgroup.commutator_normal
derivedSeries_one πŸ“–mathematicalβ€”derivedSeries
commutator
β€”β€”
derivedSeries_succ πŸ“–mathematicalβ€”derivedSeries
Bracket.bracket
Subgroup
Subgroup.commutator
β€”β€”
derivedSeries_zero πŸ“–mathematicalβ€”derivedSeries
Top.top
Subgroup
Subgroup.instTop
β€”β€”
isSolvable_def πŸ“–mathematicalβ€”IsSolvable
derivedSeries
Bot.bot
Subgroup
Subgroup.instBot
β€”β€”
isSolvable_iff_commutator_lt πŸ“–mathematicalβ€”IsSolvable
Subgroup
Preorder.toLT
PartialOrder.toPreorder
Subgroup.instPartialOrder
Bracket.bracket
Subgroup.commutator
β€”IsSolvable.commutator_lt_of_ne_bot
WellFoundedLT.induction
eq_or_ne
isSolvable_of_subsingleton
Unique.instSubsingleton
Subgroup.map_injective
Subgroup.subtype_injective
Subgroup.map_bot
derivedSeries_succ
derivedSeries_zero
Subgroup.map_commutator
MonoidHom.range_eq_map
Subgroup.range_subtype
solvable_of_surjective
MonoidHom.range_eq_top
isSolvable_of_comm πŸ“–mathematicalMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
IsSolvableβ€”CommGroup.isSolvable
isSolvable_of_subsingleton πŸ“–mathematicalβ€”IsSolvableβ€”isSolvable_of_top_eq_bot
Unique.instSubsingleton
isSolvable_of_top_eq_bot πŸ“–mathematicalTop.top
Subgroup
Subgroup.instTop
Bot.bot
Subgroup.instBot
IsSolvableβ€”β€”
map_derivedSeries_eq πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
Subgroup.map
derivedSeries
β€”le_antisymm
map_derivedSeries_le_derivedSeries
derivedSeries_le_map_derivedSeries
map_derivedSeries_le_derivedSeries πŸ“–mathematicalβ€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.map
derivedSeries
β€”le_top
Subgroup.map_commutator
not_solvable_of_mem_derivedSeries πŸ“–mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
derivedSeries
IsSolvableβ€”isSolvable_def
Subgroup.mem_bot
solvable_of_ker_le_range πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.range
IsSolvableβ€”le_bot_iff
LE.le.trans
Subgroup.map_eq_bot_iff
map_derivedSeries_le_derivedSeries
Eq.le
MonoidHom.range_eq_map
Subgroup.commutator_le_map_commutator
Subgroup.map_bot
solvable_of_solvable_injective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
IsSolvableβ€”solvable_of_ker_le_range
bot_le
MonoidHom.ker_eq_bot_iff
solvable_of_surjective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
IsSolvableβ€”solvable_of_ker_le_range
le_top
MonoidHom.range_eq_top_of_surjective
solvable_prod πŸ“–mathematicalβ€”IsSolvable
Prod.instGroup
β€”solvable_of_ker_le_range
solvable_quotient_of_solvable πŸ“–mathematicalβ€”IsSolvable
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
QuotientGroup.Quotient.group
β€”solvable_of_surjective
QuotientGroup.mk'_surjective
subgroup_solvable_of_solvable πŸ“–mathematicalβ€”IsSolvable
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
β€”solvable_of_solvable_injective
Subgroup.subtype_injective

---

← Back to Index