Documentation Verification Report

Alternating

πŸ“ Source: Mathlib/GroupTheory/SpecificGroups/Alternating.lean

Statistics

MetricCount
DefinitionsaltCongrHom, alternatingGroup, instFintype, instUniqueSubtypePermMemSubgroupAlternatingGroupOfSubsingleton
4
Theoremsalternating_normalClosure, mem_alternatingGroup, alternatingGroup_le_of_index_le_two, closure_cycleType_eq_2_2_eq_alternatingGroup, closure_three_cycles_eq_alternating, eq_alternatingGroup_of_index_eq_two, finRotate_bit1_mem_alternatingGroup, isThreeCycle_sq_of_three_mem_cycleType_five, mem_alternatingGroup, mul_mem_alternatingGroup_of_isSwap, prod_list_swap_mem_alternatingGroup_iff_even_length, altCongrHom_apply_coe, center_eq_bot, eq_bot_of_card_le_two, index_eq_one, index_eq_two, instNontrivialSubtypePermFinHAddNatOfNatMemSubgroup, isConj_of, isConj_swap_mul_swap_of_cycleType_two, isSimpleGroup_five, isThreeCycle_isConj, nontrivial_of_three_le_card, normal, normalClosure_finRotate_five, normalClosure_swap_mul_swap_five, alternatingGroup_eq_sign_ker, card_alternatingGroup, instCharacteristicPermAlternatingGroup, nat_card_alternatingGroup, two_mul_card_alternatingGroup, two_mul_nat_card_alternatingGroup
31
Total35

Equiv

Definitions

NameCategoryTheorems
altCongrHom πŸ“–CompOp
1 mathmath: altCongrHom_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
altCongrHom_apply_coe πŸ“–mathematicalβ€”Perm
Subgroup
Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
DFunLike.coe
MulEquiv
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
altCongrHom
Equiv
instEquivLike
permCongr
β€”β€”

Equiv.Perm

Theorems

NameKindAssumesProvesValidatesDepends On
alternatingGroup_le_of_index_le_two πŸ“–mathematicalSubgroup.index
Equiv.Perm
permGroup
Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
alternatingGroup
β€”Subgroup.index_ne_zero_of_finite
Subgroup.finite_quotient_of_finiteIndex
Subgroup.finiteIndex_of_finite
Equiv.finite_left
Finite.of_fintype
LE.le.eq_or_lt'
le_top
Subgroup.index_eq_one
eq_alternatingGroup_of_index_eq_two
LE.le.antisymm
le_refl
closure_cycleType_eq_2_2_eq_alternatingGroup πŸ“–mathematicalNat.cardSubgroup.closure
Equiv.Perm
permGroup
setOf
Multiset
cycleType
Multiset.instInsert
Multiset.instSingleton
alternatingGroup
β€”le_antisymm
Subgroup.closure_le
sign_of_cycleType
Multiset.sum_cons
Multiset.sum_singleton
Multiset.card_cons
Multiset.card_singleton
closure_three_cycles_eq_alternating
IsCycle.nonempty_support
IsThreeCycle.isCycle
IsThreeCycle.support_eq_iff_mem_support
IsThreeCycle.nodup_iff_mem_support
Finset.one_lt_card_iff
mul_assoc
Equiv.swap_mul_self_mul
IsThreeCycle.eq_swap_mul_swap_iff_mem_support
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
Subgroup.subset_closure
cycleType_swap_mul_swap_of_nodup
closure_three_cycles_eq_alternating πŸ“–mathematicalβ€”Subgroup.closure
Equiv.Perm
permGroup
setOf
IsThreeCycle
alternatingGroup
β€”Subgroup.closure_eq_of_le
mem_alternatingGroup
IsThreeCycle.sign
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
List.exists_of_length_succ
mul_assoc
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
IsSwap.mul_mem_closure_three_cycles
prod_list_swap_mem_alternatingGroup_iff_even_length
Nat.instAtLeastTwoHAddOfNat
two_mul
eq_alternatingGroup_of_index_eq_two πŸ“–mathematicalSubgroup.index
Equiv.Perm
permGroup
alternatingGroupβ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
Equiv.equiv_subsingleton_dom
eq_top_iff
closure_isSwap
Finite.of_fintype
Subgroup.closure_le
Mathlib.Tactic.Push.not_and_eq
Subgroup.index_top
Subgroup.ext
swap_induction_on
Subgroup.one_mem
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
Subgroup.mul_mem_iff_of_index_two
alternatingGroup.index_eq_two
Mathlib.Tactic.Contrapose.contraposeβ‚„
isConj_iff
isConj_swap
Subgroup.Normal.conj_mem
Subgroup.normal_of_index_eq_two
sign_swap
finRotate_bit1_mem_alternatingGroup πŸ“–mathematicalβ€”Equiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Fin.fintype
finRotate
β€”mem_alternatingGroup
sign_finRotate
pow_mul
pow_two
Int.units_mul_self
one_pow
isThreeCycle_sq_of_three_mem_cycleType_five πŸ“–mathematicalMultiset
Multiset.instMembership
cycleType
Fin.fintype
IsThreeCycle
Equiv.Perm
instMul
β€”mem_cycleType_iff
IsThreeCycle.congr_simp
mul_assoc
Commute.eq
Disjoint.commute
lcm_cycleType
Multiset.lcm_dvd
le_antisymm
two_le_of_mem_cycleType
le_trans
le_card_support_of_mem_cycleType
le_of_add_le_add_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Disjoint.card_support_mul
Finset.card_le_univ
dvd_refl
pow_two
orderOf_dvd_iff_pow_eq_one
one_mul
IsThreeCycle.isThreeCycle_sq
card_support_eq_three_iff
mem_alternatingGroup πŸ“–mathematicalβ€”Equiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
DFunLike.coe
MonoidHom
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Units.instMulOneClass
MonoidHom.instFunLike
sign
Units.instOne
β€”MonoidHom.mem_ker
mul_mem_alternatingGroup_of_isSwap πŸ“–mathematicalIsSwapEquiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
instMul
β€”map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
IsSwap.sign_eq
mul_neg
mul_one
neg_neg
prod_list_swap_mem_alternatingGroup_iff_even_length πŸ“–mathematicalIsSwapEquiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
instMul
instOne
Even
β€”mem_alternatingGroup
sign_prod_list_swap
neg_one_pow_eq_one_iff_even

Equiv.Perm.IsThreeCycle

Theorems

NameKindAssumesProvesValidatesDepends On
alternating_normalClosure πŸ“–mathematicalFintype.card
Equiv.Perm.IsThreeCycle
Subgroup.normalClosure
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
Set
Set.instSingletonSet
mem_alternatingGroup
Top.top
Subgroup.instTop
β€”mem_alternatingGroup
eq_top_iff
Subtype.coe_injective
Subgroup.map_injective
le_antisymm
Subgroup.map_mono
le_top
MonoidHom.range_eq_map
Subgroup.range_subtype
Subgroup.normalClosure.eq_1
MonoidHom.map_closure
LE.le.trans
le_of_eq
Equiv.Perm.closure_three_cycles_eq_alternating
Subgroup.closure_mono
isConj_iff
Equiv.Perm.isConj_iff_cycleType_eq
Group.mem_conjugatesOfSet_iff
Set.mem_singleton
alternatingGroup.isThreeCycle_isConj
mem_alternatingGroup πŸ“–mathematicalEquiv.Perm.IsThreeCycleEquiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
β€”Equiv.Perm.mem_alternatingGroup
sign

(root)

Definitions

NameCategoryTheorems
alternatingGroup πŸ“–CompOp
64 mathmath: alternatingGroup.eq_bot_of_card_le_two, alternatingGroup.commutator_perm_eq, alternatingGroup.isPreprimitive_of_three_le_card, Equiv.Perm.eq_alternatingGroup_of_index_eq_two, alternatingGroup.card_two_sylow_of_card_eq_four, alternatingGroup.kleinFour_card_of_card_eq_four, AlternatingGroup.isPreprimitive_of_three_le_card, Equiv.altCongrHom_apply_coe, Equiv.Perm.alternatingGroup_le_of_index_le_two, alternatingGroup.normalClosure_swap_mul_swap_five, alternatingGroup.subsingleton_two_sylow, Equiv.Perm.mul_mem_alternatingGroup_of_isSwap, alternatingGroup.isCoatom_stabilizer_singleton, alternatingGroup.characteristic_kleinFour, Set.powersetCard.isPretransitive_alternatingGroup, alternatingGroup.kleinFour_isKleinFour, AlternatingGroup.card_of_cycleType_singleton, alternatingGroup.normalClosure_finRotate_five, alternatingGroup.kleinFour_eq_commutator, alternatingGroup.center_eq_bot, alternatingGroup.stabilizer.surjective_toPerm, alternatingGroup.coe_kleinFour_of_card_eq_four, Equiv.Perm.mem_alternatingGroup, instCharacteristicPermAlternatingGroup, AlternatingGroup.card_of_cycleType, Equiv.Perm.finRotate_bit1_mem_alternatingGroup, Equiv.Perm.centralizer_le_alternating_iff, alternatingGroup.index_eq_one, alternatingGroup.two_sylow_eq_kleinFour_of_card_eq_four, alternatingGroup.nontrivial_of_three_le_card, Equiv.Perm.alternatingGroup_le_of_isPreprimitive_of_isThreeCycle_mem, AlternatingGroup.isMultiplyPretransitive, alternatingGroup.exists_mem_stabilizer_smul_eq, alternatingGroup.coe_two_sylow_of_card_eq_four, two_mul_card_alternatingGroup, commutator_alternatingGroup_eq_top, AlternatingGroup.isPretransitive_of_three_le_card, card_alternatingGroup, alternatingGroup.stabilizer_isPreprimitive, Equiv.Perm.prod_list_swap_mem_alternatingGroup_iff_even_length, two_mul_nat_card_alternatingGroup, Equiv.Perm.IsThreeCycle.alternating_normalClosure, alternatingGroup.normal, alternatingGroup.normal_kleinFour, alternatingGroup.isSimpleGroup_five, alternatingGroup.isCoatom_stabilizer, alternatingGroup.exponent_kleinFour_of_card_eq_four, Set.powersetCard.isPreprimitive_alternatingGroup, alternatingGroup.instNontrivialSubtypePermFinHAddNatOfNatMemSubgroup, alternatingGroup.commutator_perm_le, alternatingGroup.isPretransitive_of_three_le_card, IsMultiplyPretransitive.alternatingGroup_le, alternatingGroup.isMultiplyPretransitive, alternatingGroup.card_of_card_eq_four, AlternatingGroup.map_subtype_of_cycleType, nat_card_alternatingGroup, Equiv.Perm.closure_cycleType_eq_2_2_eq_alternatingGroup, alternatingGroup_eq_sign_ker, alternatingGroup.index_eq_two, commutator_alternatingGroup_eq_self, Equiv.Perm.IsThreeCycle.mem_alternatingGroup, AlternatingGroup.card_of_cycleType_mul_eq, Equiv.Perm.closure_three_cycles_eq_alternating, alternatingGroup.isCoatom_stabilizer_of_ncard_lt_ncard_compl
instUniqueSubtypePermMemSubgroupAlternatingGroupOfSubsingleton πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
alternatingGroup_eq_sign_ker πŸ“–mathematicalβ€”alternatingGroup
MonoidHom.ker
Equiv.Perm
Equiv.Perm.permGroup
Units
Int.instMonoid
Units.instMulOneClass
Equiv.Perm.sign
β€”β€”
card_alternatingGroup πŸ“–mathematicalβ€”Fintype.card
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
alternatingGroup.instFintype
Nat.factorial
β€”two_ne_zero
two_mul_card_alternatingGroup
Fintype.card_perm
instCharacteristicPermAlternatingGroup πŸ“–mathematicalβ€”Subgroup.Characteristic
Equiv.Perm
Equiv.Perm.permGroup
alternatingGroup
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
Unique.instSubsingleton
Equiv.equiv_subsingleton_dom
Equiv.Perm.eq_alternatingGroup_of_index_eq_two
Subgroup.index_comap_of_surjective
Equiv.surjective
alternatingGroup.index_eq_two
nat_card_alternatingGroup πŸ“–mathematicalβ€”Nat.card
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Nat.factorial
β€”Nat.card_eq_fintype_card
card_alternatingGroup
two_mul_card_alternatingGroup πŸ“–mathematicalβ€”Fintype.card
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
alternatingGroup.instFintype
Equiv.instFintype
β€”two_mul_nat_card_alternatingGroup
two_mul_nat_card_alternatingGroup πŸ“–mathematicalβ€”Nat.card
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
β€”alternatingGroup.index_eq_two
Subgroup.index_mul_card

alternatingGroup

Definitions

NameCategoryTheorems
instFintype πŸ“–CompOp
6 mathmath: AlternatingGroup.card_of_cycleType_singleton, AlternatingGroup.card_of_cycleType, two_mul_card_alternatingGroup, card_alternatingGroup, AlternatingGroup.map_subtype_of_cycleType, AlternatingGroup.card_of_cycleType_mul_eq

Theorems

NameKindAssumesProvesValidatesDepends On
center_eq_bot πŸ“–mathematicalNat.cardSubgroup.center
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
Bot.bot
Subgroup.instBot
β€”eq_bot_iff
Equiv.Perm.mem_support
Finset.card_add_card_compl
Nat.card_eq_fintype_card
Finset.card_pair
Finset.one_lt_card_iff
Equiv.Perm.coe_mul
Equiv.swap_apply_of_ne_of_ne
Finset.compl_insert
Equiv.swap_apply_left
Equiv.Perm.sign_mul
Equiv.Perm.sign_swap'
mul_neg
mul_one
neg_neg
Subgroup.mk_smul
Subgroup.mem_center_iff
eq_bot_of_card_le_two πŸ“–mathematicalFintype.cardalternatingGroup
Bot.bot
Subgroup
Equiv.Perm
Equiv.Perm.permGroup
Subgroup.instBot
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
Equiv.equiv_subsingleton_dom
LE.le.antisymm
Fintype.one_lt_card
Subgroup.eq_bot_iff_card
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
Nat.card_eq_fintype_card
two_mul_card_alternatingGroup
mul_one
Fintype.card_perm
Nat.factorial_two
index_eq_one πŸ“–mathematicalβ€”Subgroup.index
Equiv.Perm
Equiv.Perm.permGroup
alternatingGroup
β€”Subgroup.index_eq_one
Unique.instSubsingleton
Equiv.equiv_subsingleton_dom
index_eq_two πŸ“–mathematicalβ€”Subgroup.index
Equiv.Perm
Equiv.Perm.permGroup
alternatingGroup
β€”eq_1
Subgroup.index_ker
MonoidHom.range_eq_top
Equiv.Perm.sign_surjective
Nat.card_eq_fintype_card
Fintype.card_subtype_true
instNontrivialSubtypePermFinHAddNatOfNatMemSubgroup πŸ“–mathematicalβ€”Nontrivial
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Fin.fintype
β€”nontrivial_of_three_le_card
Fintype.card_fin
le_add_left
Nat.instCanonicallyOrderedAdd
le_refl
isConj_of πŸ“–mathematicalIsConj
Equiv.Perm
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Finset.card
Equiv.Perm.support
Fintype.card
Subgroup.toGroupβ€”isConj_iff
Int.units_eq_one_or
Equiv.Perm.mem_alternatingGroup
Subtype.val_injective
Finset.card_compl
le_tsub_iff_left
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Finset.card_le_univ
Finset.one_lt_card
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
Equiv.Perm.sign_swap
Int.units_mul_self
Equiv.Perm.disjoint_iff_disjoint_support
Equiv.Perm.support_swap
Finset.disjoint_insert_left
Finset.disjoint_singleton_left
Finset.mem_compl
mul_assoc
Commute.eq
Equiv.Perm.Disjoint.commute
mul_inv_rev
Equiv.swap_mul_self_mul
isConj_swap_mul_swap_of_cycleType_two πŸ“–mathematicalEquiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Fin.fintype
IsConj
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.instMul
Equiv.swap
β€”Finset.card_le_univ
le_of_mul_le_mul_right
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.instIsStrictOrderedRing
le_trans
smul_eq_mul
Multiset.sum_replicate
Multiset.eq_replicate_card
Equiv.Perm.sum_cycleType
Fintype.card_fin
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isNat_le_true
IsStrictOrderedRing.toIsOrderedRing
Nat.instAtLeastTwoHAddOfNat
Nat.instNontrivial
Equiv.Perm.isConj_iff_cycleType_eq
le_antisymm
Mathlib.Tactic.IntervalCases.of_le_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
neg_one_pow_eq_one_iff_even
one_mul
Int.units_pow_two
pow_mul
pow_add
Multiset.card_replicate
Equiv.Perm.sign_of_cycleType
Equiv.Perm.mem_alternatingGroup
Equiv.Perm.Disjoint.cycleType_mul
Equiv.Perm.disjoint_iff_disjoint_support
Equiv.Perm.support_swap
Equiv.Perm.IsCycle.cycleType
Equiv.Perm.isCycle_swap
Equiv.Perm.card_support_swap
Equiv.Perm.card_cycleType_eq_zero
isSimpleGroup_five πŸ“–mathematicalβ€”IsSimpleGroup
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Fin.fintype
Subgroup.toGroup
β€”instNontrivialSubtypePermFinHAddNatOfNatMemSubgroup
Mathlib.Tactic.Push.not_forall_eq
Subgroup.eq_bot_iff_forall
eq_top_iff
le_trans
ge_of_eq
IsConj.normalClosure_eq_top_of
normal
Equiv.Perm.mem_alternatingGroup
isConj_swap_mul_swap_of_cycleType_two
normalClosure_swap_mul_swap_five
lt_of_le_of_ne
Equiv.Perm.two_le_of_mem_cycleType
Multiset.exists_cons_of_mem
Equiv.Perm.sum_cycleType
Multiset.sum_cons
le_add_right
Nat.instCanonicallyOrderedAdd
le_rfl
Finset.card_le_univ
Equiv.Perm.finRotate_bit1_mem_alternatingGroup
Equiv.Perm.isConj_iff_cycleType_eq
Equiv.Perm.cycleType_of_card_le_mem_cycleType_add_two
cycleType_finRotate
normalClosure_finRotate_five
le_antisymm
Mathlib.Tactic.IntervalCases.of_le_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_ofNat
Multiset.sum_singleton
Multiset.card_singleton
Odd.neg_one_pow
Int.instCharZero
Equiv.Perm.sign_of_cycleType
Equiv.Perm.IsThreeCycle.mem_alternatingGroup
Equiv.Perm.isThreeCycle_sq_of_three_mem_cycleType_five
Equiv.Perm.IsThreeCycle.alternating_normalClosure
Fintype.card_fin
le_refl
Subgroup.normalClosure_le_normal
Subgroup.normalClosure_normal
Set.singleton_subset_iff
SetLike.mem_coe
Subgroup.subset_normalClosure
Set.mem_singleton
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
Mathlib.Tactic.IntervalCases.of_lt_left
or_not
isThreeCycle_isConj πŸ“–mathematicalFintype.card
Equiv.Perm.IsThreeCycle
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
IsConj
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
β€”isConj_of
Equiv.Perm.isConj_iff_cycleType_eq
Equiv.Perm.IsThreeCycle.card_support
nontrivial_of_three_le_card πŸ“–mathematicalFintype.cardNontrivial
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
β€”Fintype.one_lt_card_iff_nontrivial
lt_of_mul_lt_mul_left
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
two_mul_card_alternatingGroup
lt_trans
Fintype.card_perm
le_trans
Nat.self_le_factorial
le_of_lt
Nat.Prime.pos
Nat.prime_two
normal πŸ“–mathematicalβ€”Subgroup.Normal
Equiv.Perm
Equiv.Perm.permGroup
alternatingGroup
β€”MonoidHom.normal_ker
normalClosure_finRotate_five πŸ“–mathematicalβ€”Subgroup.normalClosure
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Fin.fintype
Subgroup.toGroup
Set
Set.instSingletonSet
finRotate
Equiv.Perm.finRotate_bit1_mem_alternatingGroup
Top.top
Subgroup.instTop
β€”Equiv.Perm.finRotate_bit1_mem_alternatingGroup
eq_top_iff
card_support_eq_three_iff
Equiv.Perm.IsThreeCycle.mem_alternatingGroup
Equiv.Perm.IsThreeCycle.alternating_normalClosure
Fintype.card_fin
le_refl
Subgroup.normalClosure_le_normal
Subgroup.normalClosure_normal
Set.singleton_subset_iff
SetLike.mem_coe
Subgroup.subset_normalClosure
Set.mem_singleton
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
Fin.isThreeCycle_cycleRange_two
Subgroup.Normal.conj_mem
InvMemClass.inv_mem
SubgroupClass.toInvMemClass
normalClosure_swap_mul_swap_five πŸ“–mathematicalβ€”Subgroup.normalClosure
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Fin.fintype
Subgroup.toGroup
Set
Set.instSingletonSet
Equiv.Perm.instMul
Equiv.swap
Units
Int.instMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Units.instMulOneClass
MonoidHom.instFunLike
Equiv.Perm.sign
Units.instOne
Equiv.Perm.mem_alternatingGroup
Top.top
Subgroup.instTop
β€”Equiv.Perm.mem_alternatingGroup
Equiv.Perm.finRotate_bit1_mem_alternatingGroup
eq_top_iff
normalClosure_finRotate_five
Subgroup.normalClosure_le_normal
Subgroup.normalClosure_normal
Set.singleton_subset_iff
SetLike.mem_coe
Subgroup.subset_normalClosure
Set.mem_singleton
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
Subgroup.Normal.conj_mem
InvMemClass.inv_mem
SubgroupClass.toInvMemClass

---

← Back to Index