Documentation Verification Report

Centralizer

📁 Source: Mathlib/GroupTheory/SpecificGroups/Alternating/Centralizer.lean

Statistics

MetricCount
Definitions0
Theoremscard_of_cycleType, card_of_cycleType_mul_eq, card_of_cycleType_singleton, map_subtype_of_cycleType, mem_commutatorSet_alternatingGroup, mem_commutator_alternatingGroup, kerParam_range_eq_centralizer_of_count_le_one, odd_of_centralizer_le_alternatingGroup, card_le_of_centralizer_le_alternating, centralizer_le_alternating_iff, count_le_one_of_centralizer_le_alternating, commutator_perm_eq, commutator_perm_le, commutator_alternatingGroup_eq_self, commutator_alternatingGroup_eq_top
15
Total15

AlternatingGroup

Theorems

NameKindAssumesProvesValidatesDepends On
card_of_cycleType 📖mathematicalFinset.card
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Finset.filter
Multiset
Equiv.Perm.cycleType
Multiset.decidableEq
Finset.univ
alternatingGroup.instFintype
Multiset.sum
Nat.instAddCommMonoid
Fintype.card
Even
Multiset.card
Multiset.decidableDforallMultiset
Nat.instDecidablePredEven
Nat.factorial
Multiset.prod
Nat.instCommMonoid
Finset.prod
Multiset.toFinset
Multiset.count
Finset.card_map
map_subtype_of_cycleType
Equiv.Perm.card_of_cycleType
mul_assoc
Finset.card_empty
not_and_or
card_of_cycleType_mul_eq 📖mathematicalFinset.card
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Finset.filter
Multiset
Equiv.Perm.cycleType
Multiset.decidableEq
Finset.univ
alternatingGroup.instFintype
Nat.factorial
Fintype.card
Multiset.sum
Nat.instAddCommMonoid
Multiset.prod
Nat.instCommMonoid
Finset.prod
Multiset.toFinset
Multiset.count
Even
Multiset.card
Multiset.decidableDforallMultiset
Nat.instDecidablePredEven
Finset.card_map
map_subtype_of_cycleType
Finset.card_empty
ite_mul
MulZeroClass.zero_mul
ite_and
Equiv.Perm.card_of_cycleType_mul_eq
card_of_cycleType_singleton 📖mathematicalFintype.cardFinset.card
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Finset.filter
Multiset
Equiv.Perm.cycleType
Multiset.instSingleton
Multiset.decidableEq
Finset.univ
alternatingGroup.instFintype
Odd
Nat.instSemiring
Nat.instDecidablePredOdd
Nat.factorial
Nat.choose
Finset.card_map
map_subtype_of_cycleType
Multiset.sum_singleton
Multiset.card_singleton
Equiv.Perm.card_of_cycleType_singleton
map_subtype_of_cycleType 📖mathematicalFinset.map
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Function.Embedding.subtype
Finset.filter
Multiset
Equiv.Perm.cycleType
Multiset.decidableEq
Finset.univ
alternatingGroup.instFintype
Finset
Even
Multiset.sum
Nat.instAddCommMonoid
Multiset.card
Nat.instDecidablePredEven
Equiv.instFintype
Finset.instEmptyCollection
Finset.ext
Equiv.Perm.sign_of_cycleType
Even.neg_one_pow
Finset.eq_empty_iff_forall_notMem
neg_one_pow_eq_one_iff_even
Int.instCharZero

Equiv.Perm

Theorems

NameKindAssumesProvesValidatesDepends On
card_le_of_centralizer_le_alternating 📖mathematicalSubgroup
Equiv.Perm
permGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.centralizer
Set
Set.instSingletonSet
alternatingGroup
Fintype.card
Multiset.sum
Nat.instAddCommMonoid
cycleType
card_fixedPoints
sum_cycleType
Finset.card_le_univ
Fintype.exists_pair_of_one_lt_card
OnCycleFactors.sign_kerParam_apply_apply
sign_swap'
Finset.prod_congr
sign_one
Finset.prod_const_one
mul_one
Int.instCharZero
OnCycleFactors.kerParam_range_le_centralizer
Set.mem_range_self
centralizer_le_alternating_iff 📖mathematicalSubgroup
Equiv.Perm
permGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.centralizer
Set
Set.instSingletonSet
alternatingGroup
Odd
Nat.instSemiring
Fintype.card
Multiset.sum
Nat.instAddCommMonoid
cycleType
Multiset.count
SetLike.le_def
instIsConcreteLE
OnCycleFactors.odd_of_centralizer_le_alternatingGroup
card_le_of_centralizer_le_alternating
count_le_one_of_centralizer_le_alternating
MonoidHom.mem_range
OnCycleFactors.kerParam_range_eq_centralizer_of_count_le_one
mem_alternatingGroup
OnCycleFactors.sign_kerParam_apply_apply
Finset.prod_eq_one
Subtype.prop
map_zpow
MonoidHom.instMonoidHomClass
IsCycle.sign
mem_cycleFactorsFinset_iff
Odd.neg_one_pow
cycleType_def
Multiset.mem_map
neg_neg
one_zpow
card_fixedPoints
card_support_le_one
le_trans
Finset.card_le_univ
sign_one
mul_one
count_le_one_of_centralizer_le_alternating 📖mathematicalSubgroup
Equiv.Perm
permGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.centralizer
Set
Set.instSingletonSet
alternatingGroup
Multiset.count
cycleType
Multiset.nodup_iff_count_le_one
cycleType_def
Multiset.nodup_map_iff_inj_on
Finset.nodup
Mathlib.Tactic.Push.not_forall_eq
Basis.nonempty
Equiv.swap_apply_left
Equiv.swap_apply_right
Equiv.swap_apply_of_ne_of_ne
Multiset.eq_replicate_card
pow_prime_eq_one_iff
Nat.fact_prime_two
Subgroup.coe_pow
Subgroup.coe_one
map_pow
MonoidHom.instMonoidHomClass
Equiv.swap_mul_self
MonoidHom.map_one
sign_of_cycleType
Multiset.sum_replicate
Multiset.card_replicate
pow_add
Even.neg_pow
Distrib.leftDistribClass
Nat.instAtLeastTwoHAddOfNat
one_pow
one_mul
Odd.neg_one_pow
OnCycleFactors.odd_of_centralizer_le_alternatingGroup
sum_cycleType
Nat.instCharZero
Basis.ofPermHom_mem_centralizer
Basis.card_ofPermHom_support
Subtype.coe_ne_coe
Finset.sum_congr
support_swap
Finset.sum_insert
Finset.sum_singleton
mul_two
units_ne_neg_self
Int.instCharZero
Subtype.prop

Equiv.Perm.IsThreeCycle

Theorems

NameKindAssumesProvesValidatesDepends On
mem_commutatorSet_alternatingGroup 📖mathematicalFintype.card
Equiv.Perm.IsThreeCycle
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Set
Set.instMembership
commutatorSet
Subgroup.toGroup
mem_commutatorSet_of_isConj_sq
alternatingGroup.isThreeCycle_isConj
congr_simp
sq
isThreeCycle_sq
mem_commutator_alternatingGroup 📖mathematicalFintype.card
Equiv.Perm.IsThreeCycle
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
commutator
commutator_eq_closure
Subgroup.subset_closure
mem_commutatorSet_alternatingGroup

Equiv.Perm.OnCycleFactors

Theorems

NameKindAssumesProvesValidatesDepends On
kerParam_range_eq_centralizer_of_count_le_one 📖mathematicalMultiset.count
Equiv.Perm.cycleType
MonoidHom.range
Equiv.Perm
Set.Elem
Function.fixedPoints
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
Prod.instGroup
Equiv.Perm.permGroup
Pi.group
Finset
SetLike.instMembership
Finset.instSetLike
Equiv.Perm.cycleFactorsFinset
Subgroup
Subgroup.instSetLike
Subgroup.zpowers
Subgroup.toGroup
kerParam
Subgroup.centralizer
Set
Set.instSingletonSet
Subgroup.ext
kerParam_range_le_centralizer
kerParam_range_eq
Equiv.Perm.ext
Multiset.nodup_map_iff_inj_on
Finset.nodup
Equiv.Perm.cycleType_def
Multiset.nodup_iff_count_le_one
Subtype.prop
mem_range_toPermHom_iff
odd_of_centralizer_le_alternatingGroup 📖mathematicalSubgroup
Equiv.Perm
Equiv.Perm.permGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.centralizer
Set
Set.instSingletonSet
alternatingGroup
Multiset
Multiset.instMembership
Equiv.Perm.cycleType
Odd
Nat.instSemiring
Multiset.mem_map
Equiv.Perm.cycleType_def
Subgroup.mem_centralizer_singleton_iff
Equiv.Perm.self_mem_cycle_factors_commute
Finset.mem_def
Nat.not_even_iff_odd
Int.units_ne_iff_eq_neg
neg_eq_iff_eq_neg
Equiv.Perm.IsCycle.sign
Equiv.Perm.mem_cycleFactorsFinset_iff
Even.neg_one_pow

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
commutator_alternatingGroup_eq_self 📖mathematicalFintype.cardBracket.bracket
Subgroup
Equiv.Perm
Equiv.Perm.permGroup
Subgroup.commutator
alternatingGroup
Subgroup.map_subtype_commutator
commutator_alternatingGroup_eq_top
MonoidHom.range_eq_map
Subgroup.range_subtype
commutator_alternatingGroup_eq_top 📖mathematicalFintype.cardcommutator
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
Top.top
Subgroup.instTop
Equiv.Perm.closure_three_cycles_eq_alternating
Subgroup.closure_closure_coe_preimage
eq_top_iff
Subgroup.closure_le
Equiv.Perm.IsThreeCycle.mem_commutator_alternatingGroup

alternatingGroup

Theorems

NameKindAssumesProvesValidatesDepends On
commutator_perm_eq 📖mathematicalFintype.cardcommutator
Equiv.Perm
Equiv.Perm.permGroup
alternatingGroup
le_antisymm
commutator_perm_le
commutator_alternatingGroup_eq_self
Subgroup.commutator_mono
le_top
commutator_perm_le 📖mathematicalSubgroup
Equiv.Perm
Equiv.Perm.permGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
commutator
alternatingGroup
commutator_eq_closure
map_commutatorElement
MonoidHom.instMonoidHomClass

---

← Back to Index