Documentation Verification Report

KleinFour

πŸ“ Source: Mathlib/GroupTheory/SpecificGroups/Alternating/KleinFour.lean

Statistics

MetricCount
DefinitionskleinFour
1
Theoremscard_of_card_eq_four, card_two_sylow_of_card_eq_four, characteristic_kleinFour, coe_kleinFour_of_card_eq_four, coe_two_sylow_of_card_eq_four, exponent_kleinFour_of_card_eq_four, kleinFour_card_of_card_eq_four, kleinFour_eq_commutator, kleinFour_isKleinFour, mem_kleinFour_of_order_two_pow, normal_kleinFour, subsingleton_two_sylow, two_sylow_eq_kleinFour_of_card_eq_four
13
Total14

alternatingGroup

Definitions

NameCategoryTheorems
kleinFour πŸ“–CompOp
8 mathmath: kleinFour_card_of_card_eq_four, characteristic_kleinFour, kleinFour_isKleinFour, kleinFour_eq_commutator, coe_kleinFour_of_card_eq_four, two_sylow_eq_kleinFour_of_card_eq_four, normal_kleinFour, exponent_kleinFour_of_card_eq_four

Theorems

NameKindAssumesProvesValidatesDepends On
card_of_card_eq_four πŸ“–mathematicalNat.cardEquiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
β€”Finite.one_lt_card_iff_nontrivial
Finite.of_fintype
Nat.instAtLeastTwoHAddOfNat
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
Nat.instCharZero
nat_card_alternatingGroup
card_two_sylow_of_card_eq_four πŸ“–mathematicalNat.cardEquiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
Sylow.toSubgroup
β€”Sylow.card_eq_multiplicity
Subgroup.instFiniteSubtypeMem
Equiv.finite_left
Finite.of_fintype
Nat.fact_prime_two
card_of_card_eq_four
Nat.factorization_mul_apply_of_coprime
Nat.factorization_pow
Finsupp.coe_smul
Pi.smul_apply
smul_eq_mul
Nat.Prime.factorization_self
Nat.prime_two
Nat.factorization_eq_zero_of_not_dvd
mul_one
add_zero
characteristic_kleinFour πŸ“–mathematicalNat.cardSubgroup.Characteristic
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
kleinFour
β€”Sylow.nonempty
subsingleton_two_sylow
two_sylow_eq_kleinFour_of_card_eq_four
Sylow.characteristic_of_subsingleton
coe_kleinFour_of_card_eq_four πŸ“–mathematicalNat.cardSetLike.coe
Subgroup
Equiv.Perm
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
kleinFour
Set
Set.instUnion
Set.instSingletonSet
Subgroup.one
setOf
Multiset
Equiv.Perm.cycleType
Multiset.instInsert
Multiset.instSingleton
β€”Sylow.nonempty
two_sylow_eq_kleinFour_of_card_eq_four
coe_two_sylow_of_card_eq_four
coe_two_sylow_of_card_eq_four πŸ“–mathematicalNat.cardSetLike.coe
Sylow
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
Sylow.instSetLike
Set
Set.instUnion
Set.instSingletonSet
Subgroup.one
setOf
Multiset
Equiv.Perm.cycleType
Multiset.instInsert
Multiset.instSingleton
β€”Set.eq_of_subset_of_card_le
IsPGroup.iff_orderOf
Nat.fact_prime_two
Sylow.isPGroup'
orderOf_submonoid
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
mem_kleinFour_of_order_two_pow
Eq.dvd
Eq.trans_ge
card_two_sylow_of_card_eq_four
Nat.card_eq_card_toFinset
Set.toFinset_union
Set.toFinset_singleton
Set.toFinset_setOf
LE.le.trans
Finset.card_union_le
Finset.card_singleton
AlternatingGroup.card_of_cycleType
Nat.card_eq_fintype_card
exponent_kleinFour_of_card_eq_four πŸ“–mathematicalNat.cardMonoid.exponent
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
kleinFour
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”Monoid.exponent_dvd
coe_kleinFour_of_card_eq_four
SetLike.mem_coe
one_pow
Equiv.Perm.lcm_cycleType
Multiset.lcm_cons
Multiset.lcm_singleton
normalize_eq
Unique.instSubsingleton
lcm_same
pow_orderOf_eq_one
Nat.dvd_prime
Nat.prime_two
Monoid.exp_eq_one_iff
Finite.card_le_one_iff_subsingleton
Subgroup.instFiniteSubtypeMem
Equiv.finite_left
Finite.of_fintype
kleinFour_card_of_card_eq_four
kleinFour_card_of_card_eq_four πŸ“–mathematicalNat.cardEquiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
kleinFour
β€”Sylow.nonempty
two_sylow_eq_kleinFour_of_card_eq_four
card_two_sylow_of_card_eq_four
kleinFour_eq_commutator πŸ“–mathematicalNat.cardkleinFour
commutator
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
β€”normal_kleinFour
kleinFour_card_of_card_eq_four
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
Subgroup.card_eq_card_quotient_mul_card_subgroup
card_of_card_eq_four
Subgroup.Normal.quotient_commutative_iff_commutator_le
IsCyclic.commutative
isCyclic_of_prime_card
Nat.fact_prime_three
commutator_eq_bot_iff_center_eq_top
center_eq_bot
le_of_eq
bot_ne_top
Subgroup.nontrivial_iff
Finite.one_lt_card_iff_nontrivial
Subgroup.instFiniteSubtypeMem
Equiv.finite_left
Finite.of_fintype
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
Subgroup.bot_or_exists_ne_one
Set.mem_setOf_eq
Set.mem_singleton_iff
Set.mem_union
coe_kleinFour_of_card_eq_four
SetLike.mem_coe
le_antisymm
Subgroup.one_mem
isConj_iff
Equiv.Perm.isConj_iff_cycleType_eq
normal
MulAut.conjNormal_apply
symm
IsEquiv.toSymm
eq_isEquiv
MonoidHom.range_eq_map
MonoidHom.range_eq_top
MulEquiv.surjective
Subgroup.map_commutator
Subgroup.mem_map_of_mem
kleinFour_isKleinFour πŸ“–mathematicalNat.cardIsKleinFour
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
kleinFour
β€”kleinFour_card_of_card_eq_four
exponent_kleinFour_of_card_eq_four
mem_kleinFour_of_order_two_pow πŸ“–mathematicalNat.card
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Monoid.toNatPow
Nat.instMonoid
Equiv.Perm.cycleType
Multiset
Multiset.instEmptyCollection
Multiset.instInsert
Multiset.instSingleton
β€”Equiv.Perm.sum_cycleType
Nat.card_eq_fintype_card
Finset.card_le_univ
LE.le.trans
Multiset.le_sum_of_mem
Nat.instCanonicallyOrderedAdd
Equiv.Perm.one_lt_of_mem_cycleType
Mathlib.Tactic.Contrapose.contrapose₁
Multiset.exists_cons_of_mem
Multiset.eq_replicate_card
Multiset.sum_eq_zero_iff
Nat.instIsOrderedAddMonoid
le_zero_iff
add_le_iff_nonpos_right
IsOrderedAddMonoid.toAddLeftMono
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Multiset.sum_cons
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
Multiset.sum_singleton
Multiset.card_singleton
Equiv.Perm.sign_of_cycleType
Equiv.Perm.mem_alternatingGroup
le_antisymm
Mathlib.Tactic.IntervalCases.of_le_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_ofNat
Nat.prime_eq_prime_of_dvd_pow
Nat.prime_three
Nat.prime_two
Multiset.lcm_dvd
Equiv.Perm.lcm_cycleType
Mathlib.Tactic.IntervalCases.of_lt_left
two_pos
Nat.instZeroLEOneClass
smul_eq_mul
Multiset.sum_replicate
Mathlib.Meta.NormNum.isNat_natDiv
normal_kleinFour πŸ“–mathematicalNat.cardSubgroup.Normal
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
kleinFour
β€”characteristic_kleinFour
Subgroup.normal_of_characteristic
subsingleton_two_sylow πŸ“–mathematicalNat.cardSylow
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
β€”Sylow.ext_iff
two_sylow_eq_kleinFour_of_card_eq_four
two_sylow_eq_kleinFour_of_card_eq_four πŸ“–mathematicalNat.cardSylow.toSubgroup
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
kleinFour
β€”kleinFour.eq_1
Subgroup.closure_insert_one
Set.singleton_union
coe_two_sylow_of_card_eq_four
Subgroup.closure_eq

---

← Back to Index