Documentation Verification Report

MaximalSubgroups

πŸ“ Source: Mathlib/GroupTheory/SpecificGroups/Alternating/MaximalSubgroups.lean

Statistics

MetricCount
Definitions0
TheoremsalternatingGroup_le_of_isPreprimitive, exists_mem_stabilizer_isThreeCycle, exists_mem_stabilizer_isThreeCycle_of_two_lt_ncard, subsingleton_of_ssubset_compl_of_stabilizer_alternatingGroup_le, exists_mem_stabilizer_smul_eq, isCoatom_stabilizer, isCoatom_stabilizer_of_ncard_lt_ncard_compl, isCoatom_stabilizer_singleton, surjective_toPerm, stabilizer_isPreprimitive, stabilizer_ne_top, stabilizer_subgroup_isPreprimitive, subgroup_eq_top_of_isPreprimitive
13
Total13

Equiv.Perm

Theorems

NameKindAssumesProvesValidatesDepends On
alternatingGroup_le_of_isPreprimitive πŸ“–β€”Nat.card
Subgroup
Equiv.Perm
permGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.instMin
MulAction.stabilizer
Set
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
applyMulAction
alternatingGroup
β€”β€”exists_mem_stabilizer_isThreeCycle
alternatingGroup_le_of_isPreprimitive_of_isThreeCycle_mem
IsThreeCycle.mem_alternatingGroup
exists_mem_stabilizer_isThreeCycle πŸ“–mathematicalNat.cardEquiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
Set
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
applyMulAction
IsThreeCycle
β€”exists_mem_stabilizer_isThreeCycle_of_two_lt_ncard
Set.ncard_add_ncard_compl
Set.toFinite
Subtype.finite
Finite.of_fintype
stabilizer_compl
exists_mem_stabilizer_isThreeCycle_of_two_lt_ncard πŸ“–mathematicalSet.ncardEquiv.Perm
Subgroup
permGroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
Set
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
applyMulAction
IsThreeCycle
β€”Set.two_lt_ncard_iff
Set.toFinite
Subtype.finite
Finite.of_fintype
MulAction.mem_stabilizer_set_iff_subset_smul_set
Set.subset_smul_set_iff
mul_inv_rev
isThreeCycle_swap_mul_swap_same

MulAction.IsBlock

Theorems

NameKindAssumesProvesValidatesDepends On
subsingleton_of_ssubset_compl_of_stabilizer_alternatingGroup_le πŸ“–mathematicalSet.Nontrivial
Set
Set.instHasSSubset
Compl.compl
Set.instCompl
Subgroup
Equiv.Perm
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MulAction.stabilizer
MulAction.instMulAction
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.applyMulAction
MulAction.IsBlock
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Set.Subsingletonβ€”subsingleton_of_ssubset_of_stabilizer_le
alternatingGroup.stabilizer.surjective_toPerm
compl_compl
stabilizer_compl

alternatingGroup

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem_stabilizer_smul_eq πŸ“–mathematicalNat.card
Set
Set.instMembership
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
MulAction.stabilizer
MulAction.instMulAction
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.applyMulAction
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
one_smul
Set.diff_nonempty_of_ncard_lt_ncard
Set.ncard_pair
Set.toFinite
Finite.Set.finite_insert
Subtype.finite
Finite.of_fintype
Equiv.Perm.sign_mul
Equiv.Perm.sign_swap'
mul_neg
mul_one
neg_neg
MulAction.mem_stabilizer_set'
Set.ncard_add_ncard_compl
Set.one_lt_ncard_iff
isCoatom_stabilizer πŸ“–mathematicalSet.Nonempty
Compl.compl
Set
Set.instCompl
IsCoatom
Subgroup
Equiv.Perm
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
PartialOrder.toPreorder
Subgroup.instPartialOrder
BoundedOrder.toOrderTop
Preorder.toLE
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
MulAction.stabilizer
MulAction.instMulAction
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.applyMulAction
β€”isCoatom_stabilizer_of_ncard_lt_ncard_compl
isCoatom_stabilizer_singleton
Set.ncard_add_ncard_compl
Set.toFinite
Subtype.finite
Finite.of_fintype
Set.ncard_pos
Nat.instAtLeastTwoHAddOfNat
two_mul
stabilizer_compl
compl_compl
isCoatom_stabilizer_of_ncard_lt_ncard_compl πŸ“–mathematicalSet.Nontrivial
Set.ncard
Compl.compl
Set
Set.instCompl
IsCoatom
Subgroup
Equiv.Perm
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
PartialOrder.toPreorder
Subgroup.instPartialOrder
BoundedOrder.toOrderTop
Preorder.toLE
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
MulAction.stabilizer
MulAction.instMulAction
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.applyMulAction
β€”Set.ncard_add_ncard_compl
Set.toFinite
Subtype.finite
Finite.of_fintype
Set.one_lt_ncard_iff_nontrivial
lt_of_le_of_lt
Set.Nonempty.ncard_pos
Set.Nontrivial.nonempty
stabilizer_ne_top
Subgroup.isPretransitive_of_stabilizer_lt
exists_mem_stabilizer_smul_eq
MulAction.IsTrivialBlock.eq_1
Set.compl_ne_univ
MulAction.IsBlock.eq_univ_of_card_lt
MulAction.IsBlock.subsingleton_of_ssubset_compl_of_stabilizer_alternatingGroup_le
HasSubset.Subset.ssubset_of_ne
Set.instIsNonstrictStrictOrderSubsetSSubset
Set.instAntisymmSubset
LT.lt.le
stabilizer_subgroup_isPreprimitive
MulAction.IsBlock.subsingleton_of_stabilizer_lt_of_subset
isMultiplyPretransitive
MulAction.isMultiplyPretransitive_of_le
MulAction.IsBlock.compl_subset_of_stabilizer_le_of_not_subset_of_not_subset_compl
Set.ncard_le_ncard
subgroup_eq_top_of_isPreprimitive
isCoatom_stabilizer_singleton πŸ“–mathematicalNat.card
Set.Nonempty
Set.Subsingleton
IsCoatom
Subgroup
Equiv.Perm
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
PartialOrder.toPreorder
Subgroup.instPartialOrder
BoundedOrder.toOrderTop
Preorder.toLE
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
MulAction.stabilizer
Set
MulAction.instMulAction
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.applyMulAction
β€”Finite.one_lt_card_iff_nontrivial
Finite.of_fintype
Set.Subsingleton.eq_singleton_of_mem
MulAction.stabilizer_singleton
isPreprimitive_of_three_le_card
MulAction.IsPreprimitive.isCoatom_stabilizer_of_isPreprimitive
stabilizer_isPreprimitive πŸ“–mathematicalSet.Nontrivial
Compl.compl
Set
Set.instCompl
MulAction.IsPreprimitive
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
MulAction.stabilizer
MulAction.instMulAction
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.applyMulAction
Set.Elem
SMul.ofStabilizer
β€”MulAction.isPreprimitive_stabilizer_of_surjective
stabilizer.surjective_toPerm
stabilizer_ne_top πŸ“–β€”Set.Nonempty
Set.Nontrivial
Compl.compl
Set
Set.instCompl
β€”β€”Equiv.Perm.sign_mul
Equiv.Perm.sign_swap'
mul_ite
mul_one
mul_neg
neg_neg
SemigroupAction.mul_smul
Mathlib.Tactic.Contrapose.contrapose₃
stabilizer_subgroup_isPreprimitive πŸ“–mathematicalSet.Nontrivial
Compl.compl
Set
Set.instCompl
Subgroup
Equiv.Perm
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MulAction.stabilizer
MulAction.instMulAction
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.applyMulAction
MulAction.IsPreprimitive
Set.Elem
SMul.ofStabilizer
β€”stabilizer_isPreprimitive
Subtype.prop
MulAction.IsPreprimitive.of_surjective
subgroup_eq_top_of_isPreprimitive πŸ“–mathematicalNat.card
Subgroup
Equiv.Perm
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MulAction.stabilizer
Set
MulAction.instMulAction
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.applyMulAction
Top.top
Subgroup.instTop
β€”Equiv.Perm.exists_mem_stabilizer_isThreeCycle
eq_top_iff
Subgroup.map_subtype_le_map_subtype
MonoidHom.range_eq_map
Subgroup.range_subtype
Equiv.Perm.alternatingGroup_le_of_isPreprimitive_of_isThreeCycle_mem
MulAction.isPreprimitive_congr
MonoidHom.subgroupMap_surjective
Function.bijective_id
Equiv.Perm.IsThreeCycle.mem_alternatingGroup

alternatingGroup.stabilizer

Theorems

NameKindAssumesProvesValidatesDepends On
surjective_toPerm πŸ“–mathematicalSet.Nontrivial
Compl.compl
Set
Set.instCompl
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Subgroup.toGroup
MulAction.stabilizer
MulAction.instMulAction
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.applyMulAction
Set.Elem
MulAction.toPerm
instMulActionSubtypeMemSubgroupStabilizerSetElem
β€”Equiv.Perm.swap_isSwap_iff
Equiv.Perm.support_swap
Finset.coe_insert
Finset.coe_singleton
MulAction.mem_stabilizer_iff
MulAction.mem_stabilizer_set_iff_smul_set_subset
Set.toFinite
Subtype.finite
Finite.of_fintype
Equiv.Perm.smul_def
Equiv.Perm.notMem_support
Set.disjoint_left
Int.units_eq_one_or
Equiv.Perm.sign_ofSubtype
Submonoid.mk_smul
Equiv.Perm.ofSubtype_mem_stabilizer
Equiv.Perm.ext
Equiv.Perm.ofSubtype_apply_coe
Equiv.Perm.sign_mul
Equiv.Perm.IsSwap.sign_eq
mul_neg
mul_one
neg_neg
SemigroupAction.mul_smul
Subtype.prop

---

← Back to Index