Documentation Verification Report

Cyclic

📁 Source: Mathlib/GroupTheory/SpecificGroups/Cyclic.lean

Statistics

MetricCount
DefinitionsaddCommGroup, commGroup, mulAutMulEquiv, toMonoidHomZModOfIsCyclic, addCommGroupOfAddCyclicCenterQuotient, addEquivOfAddCyclicCardEq, addEquivOfAddOrderOfEq, addEquivOfPrimeCardEq, addMonoidHomOfForallMemZMultiples, commGroupOfCyclicCenterQuotient, monoidHomOfForallMemZpowers, mulEquivOfCyclicCardEq, mulEquivOfOrderOfEq, mulEquivOfPrimeCardEq, zmodAddCyclicAddEquiv, zmodCyclicMulEquiv
16
Theoremsis_simple_iff_prime_card, eq_iff_eq_on_generator, isAddCyclic, isAddCyclic_of_coprime_card_ker, isAddCyclic_of_coprime_card_range_card_ker, isAddCyclic_prod_iff, is_simple_iff_prime_card, eq_iff_eq_on_generator, map_addCyclic, eq_bot_or_eq_top_of_prime_card, isAddCyclic, isAddCyclic_iff_exists_zmultiples_eq_top, isAddCyclic_of_le, isAddCyclic_zmultiples, le_zmultiples_iff, isAddCyclic, isCyclic, is_simple_iff_isCyclic_and_prime_card, is_simple_iff_prime_card, isCyclic_of_coprime_card_ker, isCyclic_of_coprime_card_range_card_ker, isCyclic_prod_iff, is_simple_iff_prime_card, addOrderOf_eq_zero_of_forall_mem_zmultiples, orderOf_eq_zero_of_forall_mem_zpowers, card_addOrderOf_eq_totient, card_nsmulAddMonoidHom_ker, card_nsmulAddMonoidHom_range, card_nsmul_eq_zero_le, commutative, exists_addMonoid_generator, exists_generator, exists_ofOrder_eq_natCard, exponent_eq_card, exponent_eq_zero_of_infinite, ext, iff_exponent_eq_card, image_range_addOrderOf, image_range_card, index_nsmulAddMonoidHom_ker, index_nsmulAddMonoidHom_range, of_exponent_eq_card, unique_zsmul_zmod, card_mulAut, card_orderOf_eq_totient, card_powMonoidHom_ker, card_powMonoidHom_range, card_pow_eq_one_le, commutative, exists_generator, exists_monoid_generator, exists_ofOrder_eq_natCard, exponent_eq_card, exponent_eq_zero_of_infinite, ext, iff_exponent_eq_card, image_range_card, image_range_orderOf, index_powMonoidHom_ker, index_powMonoidHom_range, mulAutMulEquiv_symm_apply_apply, mulAutMulEquiv_symm_apply_symm_apply, of_exponent_eq_card, unique_zpow_zmod, val_inv_mulAutMulEquiv_apply, val_mulAutMulEquiv_apply, finite, isAddCyclic, prime_card, finite, isCyclic, prime_card, isAddCyclic_iff_nonempty_equiv_int, isCyclic_iff_nonempty_equiv_int, eq_iff_eq_on_generator, map_cyclic, toMonoidHomZModOfIsCyclic_apply, eq_iff_eq_on_generator, isCyclic, of_not_isAddCyclic, of_not_isCyclic, eq_bot_or_eq_top_of_prime_card, isCyclic, isCyclic_iff_exists_zpowers_eq_top, isCyclic_of_le, isCyclic_zpowers, le_zpowers_iff, exponent, instIsAddCyclic, instIsSimpleAddGroup, addEquivOfAddOrderOfEq_apply_gen, addEquivOfAddOrderOfEq_symm, addEquivOfAddOrderOfEq_symm_apply_gen, addMonoidHomOfForallMemZMultiples_apply_gen, addOrderOf_eq_card_of_forall_mem_multiples, addOrderOf_eq_card_of_forall_mem_zmultiples, addOrderOf_eq_card_of_zmultiples_eq_top, card_addOrderOf_eq_totient_aux₂, card_orderOf_eq_totient_aux₂, commutative_of_addCyclic_center_quotient, commutative_of_cyclic_center_quotient, coprime_card_of_isAddCyclic_prod, coprime_card_of_isCyclic_prod, exists_nsmul_ne_zero_of_isAddCyclic, exists_pow_ne_one_of_isCyclic, exists_prime_addEquiv_ZMod, instIsAddCyclicInt, instIsCyclicUnitsWithZero, instIsMulCommutativeSubtypeMemSubgroupOfIsCyclic, isAddCyclic_additive, isAddCyclic_additive_iff, isAddCyclic_iff_exists_addOrderOf_eq_natCard, isAddCyclic_iff_exists_natCard_le_addOrderOf, isAddCyclic_iff_exists_zmultiples_eq_top, isAddCyclic_left_of_prod, isAddCyclic_of_addOrderOf_eq_card, isAddCyclic_of_card_dvd_prime, isAddCyclic_of_card_le_addOrderOf, isAddCyclic_of_card_nsmul_eq_zero_le, isAddCyclic_of_injective, isAddCyclic_of_prime_card, isAddCyclic_of_subsingleton, isAddCyclic_of_surjective, isAddCyclic_right_of_prod, isCyclic_iff_exists_natCard_le_orderOf, isCyclic_iff_exists_orderOf_eq_natCard, isCyclic_iff_exists_zpowers_eq_top, isCyclic_left_of_prod, isCyclic_multiplicative, isCyclic_multiplicative_iff, isCyclic_of_card_dvd_prime, isCyclic_of_card_le_orderOf, isCyclic_of_card_pow_eq_one_le, isCyclic_of_injective, isCyclic_of_orderOf_eq_card, isCyclic_of_prime_card, isCyclic_of_subsingleton, isCyclic_of_surjective, isCyclic_right_of_prod, isSimpleAddGroup_of_prime_card, isSimpleGroup_of_prime_card, mem_multiples_of_prime_card, mem_powers_of_prime_card, mem_zmultiples_of_prime_card, mem_zpowers_of_prime_card, monoidHomOfForallMemZpowers_apply_gen, mulEquivOfOrderOfEq_apply_gen, mulEquivOfOrderOfEq_symm, mulEquivOfOrderOfEq_symm_apply_gen, multiples_eq_top_of_prime_card, not_isAddCyclic_iff_exponent_eq_prime, not_isAddCyclic_prod_of_infinite_nontrivial, not_isCyclic_iff_exponent_eq_prime, not_isCyclic_prod_of_infinite_nontrivial, orderOf_eq_card_of_forall_mem_powers, orderOf_eq_card_of_forall_mem_zpowers, orderOf_eq_card_of_zpowers_eq_top, powers_eq_top_of_prime_card, zmultiplesHom_ker_eq, zmultiples_eq_top_of_prime_card, zpowersHom_ker_eq, zpowers_eq_top_of_prime_card
162
Total178

AddCommGroup

Theorems

NameKindAssumesProvesValidatesDepends On
is_simple_iff_prime_card 📖mathematicalIsSimpleAddGroup
toAddGroup
Nat.Prime
Nat.card
add_comm
AddGroup.is_simple_iff_prime_card

AddEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
eq_iff_eq_on_generator 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
DFunLike.coe
AddEquiv
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
EquivLike.toFunLike
instEquivLike
toAddMonoidHom_injective
AddMonoidHom.eq_iff_eq_on_generator
isAddCyclic 📖mathematicalIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
isAddCyclic_of_surjective
AddEquivClass.instAddMonoidHomClass
instAddEquivClass
surjective

AddGroup

Theorems

NameKindAssumesProvesValidatesDepends On
isAddCyclic_of_coprime_card_ker 📖mathematicalNat.card
AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddMonoidHom.ker
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
toSubNegMonoid
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoidHom.instFunLike
IsAddCyclic
SubNegMonoid.toZSMul
isAddCyclic_of_coprime_card_range_card_ker
AddMonoidHom.range_eq_top
AddSubgroup.card_top
AddEquiv.isAddCyclic
isAddCyclic_of_coprime_card_range_card_ker 📖mathematicalNat.card
AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddMonoidHom.ker
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
toSubNegMonoid
AddMonoidHom.range
IsAddCyclic
SubNegMonoid.toZSMul
finite_or_infinite
AddEquiv.isAddCyclic
AddMonoidHom.ker_eq_top_iff
AddMonoidHom.range_eq_bot_iff
AddSubgroup.eq_bot_iff_card
Nat.card_eq_zero_of_infinite
AddMonoidHom.ker_eq_bot_iff
AddSubgroup.eq_bot_of_card_eq
AddMonoidHom.finite_iff_finite_ker_range
IsAddCyclic.iff_exponent_eq_card
dvd_antisymm
Nat.instIsCancelMulZero
Unique.instSubsingleton
exponent_dvd_nat_card
AddSubgroup.card_mul_index
AddSubgroup.index_ker
IsAddCyclic.exponent_eq_card
AddMonoid.exponent_dvd_of_addMonoidHom
AddSubgroup.subtype_injective
AddMonoidHom.exponent_dvd
AddMonoidHom.instAddMonoidHomClass
AddMonoidHom.rangeRestrict_surjective
isAddCyclic_prod_iff 📖mathematicalIsAddCyclic
Prod.instSMul
SubNegMonoid.toZSMul
toSubNegMonoid
Nat.card
isAddCyclic_left_of_prod
isAddCyclic_right_of_prod
finite_or_infinite
subsingleton_or_nontrivial
Nat.card_eq_zero_of_infinite
Nat.card_unique
Zero.instNonempty
not_isAddCyclic_prod_of_infinite_nontrivial
AddEquiv.isAddCyclic
coprime_card_of_isAddCyclic_prod
AddMonoidHom.ker_snd
isAddCyclic_of_coprime_card_ker
Nat.card_congr
Prod.snd_surjective
is_simple_iff_prime_card 📖mathematicalIsSimpleAddGroup
Nat.Prime
Nat.card
IsSimpleAddGroup.prime_card
isSimpleAddGroup_of_prime_card

AddMonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
eq_iff_eq_on_generator 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instFunLike
DFunLike.ext_iff
AddSubgroup.mem_zmultiples_iff
map_zsmul
instAddMonoidHomClass
map_addCyclic 📖mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instFunLike
SubNegMonoid.toZSMul
IsAddCyclic.exists_generator
map_zsmul
instAddMonoidHomClass
mul_zsmul'
mul_zsmul

AddSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
eq_bot_or_eq_top_of_prime_card 📖mathematicalBot.bot
AddSubgroup
instBot
Top.top
instTop
Nat.finite_of_card_ne_zero
Nat.Prime.ne_zero
Fact.out
card_addSubgroup_dvd_card
card_eq_iff_eq_top
instFiniteSubtypeMem
eq_bot_iff_card
Nat.dvd_prime
isAddCyclic 📖mathematicalIsAddCyclic
AddSubgroup
SetLike.instMembership
instSetLike
zsmul
IsAddCyclic.exists_generator
zero_zsmul
natCast_zsmul
neg_mem_iff
negSucc_zsmul
Nat.find_spec
mul_zsmul'
zsmul_mem
add_mem_cancel_right
add_zsmul
by_contradiction
Nat.find_min
ext
mem_bot
zero_mem
Bot.isAddCyclic
isAddCyclic_iff_exists_zmultiples_eq_top 📖mathematicalIsAddCyclic
AddSubgroup
SetLike.instMembership
instSetLike
zsmul
zmultiples
isAddCyclic_iff_exists_zmultiples_eq_top
map_injective
subtype_injective
AddMonoidHom.range_eq_map
range_subtype
AddMonoidHom.map_zmultiples
mem_zmultiples
isAddCyclic_of_le 📖mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IsAddCyclic
SetLike.instMembership
instSetLike
zsmul
isAddCyclic_of_injective
inclusion_injective
isAddCyclic_zmultiples 📖mathematicalIsAddCyclic
AddSubgroup
SetLike.instMembership
instSetLike
zmultiples
zsmul
isAddCyclic_iff_exists_zmultiples_eq_top
le_zmultiples_iff 📖mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
zmultiples
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
isAddCyclic_iff_exists_zmultiples_eq_top
isAddCyclic_of_le
isAddCyclic_zmultiples
mem_zmultiples_iff
mem_zmultiples
natCast_zsmul
neg_zsmul
zmultiples_neg
zmultiples_le_of_mem
nsmul_mem_zmultiples

Bot

Theorems

NameKindAssumesProvesValidatesDepends On
isAddCyclic 📖mathematicalIsAddCyclic
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
bot
AddSubgroup.instBot
AddSubgroup.zsmul
zero_zsmul
AddSubgroup.mem_bot
isCyclic 📖mathematicalIsCyclic
Subgroup
SetLike.instMembership
Subgroup.instSetLike
bot
Subgroup.instBot
Subgroup.zpow
zpow_zero
Subgroup.mem_bot

CommGroup

Theorems

NameKindAssumesProvesValidatesDepends On
is_simple_iff_isCyclic_and_prime_card 📖mathematicalIsSimpleGroup
toGroup
Nat.Prime
Nat.card
is_simple_iff_prime_card
is_simple_iff_prime_card 📖mathematicalIsSimpleGroup
toGroup
Nat.Prime
Nat.card
mul_comm
Group.is_simple_iff_prime_card

Group

Theorems

NameKindAssumesProvesValidatesDepends On
isCyclic_of_coprime_card_ker 📖mathematicalNat.card
Subgroup
CommGroup.toGroup
SetLike.instMembership
Subgroup.instSetLike
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
toDivInvMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MonoidHom.instFunLike
IsCyclic
DivInvMonoid.toZPow
isCyclic_of_coprime_card_range_card_ker
MonoidHom.range_eq_top
Subgroup.card_top
MulEquiv.isCyclic
isCyclic_of_coprime_card_range_card_ker 📖mathematicalNat.card
Subgroup
CommGroup.toGroup
SetLike.instMembership
Subgroup.instSetLike
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
toDivInvMonoid
MonoidHom.range
IsCyclic
DivInvMonoid.toZPow
finite_or_infinite
MulEquiv.isCyclic
MonoidHom.ker_eq_top_iff
MonoidHom.range_eq_bot_iff
Subgroup.eq_bot_iff_card
Nat.card_eq_zero_of_infinite
MonoidHom.ker_eq_bot_iff
Subgroup.eq_bot_of_card_eq
MonoidHom.finite_iff_finite_ker_range
IsCyclic.iff_exponent_eq_card
dvd_antisymm
Nat.instIsCancelMulZero
Unique.instSubsingleton
exponent_dvd_nat_card
Subgroup.card_mul_index
Subgroup.index_ker
IsCyclic.exponent_eq_card
Monoid.exponent_dvd_of_monoidHom
Subgroup.subtype_injective
MonoidHom.exponent_dvd
MonoidHom.instMonoidHomClass
MonoidHom.rangeRestrict_surjective
isCyclic_prod_iff 📖mathematicalIsCyclic
Prod.instPow
DivInvMonoid.toZPow
toDivInvMonoid
Nat.card
isCyclic_left_of_prod
isCyclic_right_of_prod
finite_or_infinite
subsingleton_or_nontrivial
Nat.card_eq_zero_of_infinite
Nat.card_unique
One.instNonempty
not_isCyclic_prod_of_infinite_nontrivial
MulEquiv.isCyclic
coprime_card_of_isCyclic_prod
MonoidHom.ker_snd
isCyclic_of_coprime_card_ker
Nat.card_congr
Prod.snd_surjective
is_simple_iff_prime_card 📖mathematicalIsSimpleGroup
Nat.Prime
Nat.card
IsSimpleGroup.prime_card
isSimpleGroup_of_prime_card

Infinite

Theorems

NameKindAssumesProvesValidatesDepends On
addOrderOf_eq_zero_of_forall_mem_zmultiples 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
addOrderOf_eq_card_of_forall_mem_zmultiples
Nat.card_eq_zero_of_infinite
orderOf_eq_zero_of_forall_mem_zpowers 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
orderOf_eq_card_of_forall_mem_zpowers
Nat.card_eq_zero_of_infinite

IsAddCyclic

Definitions

NameCategoryTheorems
addCommGroup 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
card_addOrderOf_eq_totient 📖mathematicalFintype.cardFinset.card
Finset.filter
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Finset.univ
Nat.totient
card_addOrderOf_eq_totient_aux₂
card_nsmul_eq_zero_le
card_nsmulAddMonoidHom_ker 📖mathematicalNat.card
AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddMonoidHom.ker
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
nsmulAddMonoidHom
AddCommGroup.toAddCommMonoid
AddSubgroup.index_ne_zero_of_finite
AddSubgroup.finite_quotient_of_finiteIndex
AddSubgroup.finiteIndex_ker
AddSubgroup.instFiniteSubtypeMem
mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
Nat.instIsCancelMulZero
AddSubgroup.card_mul_index
index_nsmulAddMonoidHom_ker
card_nsmulAddMonoidHom_range 📖mathematicalNat.card
AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddMonoidHom.range
nsmulAddMonoidHom
AddCommGroup.toAddCommMonoid
isAddCyclic_iff_exists_zmultiples_eq_top
AddMonoidHom.range_eq_map
AddMonoidHom.map_zmultiples
Nat.card_zmultiples
nsmulAddMonoidHom_apply
addOrderOf_nsmul
addOrderOf_eq_card_of_zmultiples_eq_top
card_nsmul_eq_zero_le 📖mathematicalFinset.card
Finset.filter
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Finset.univ
exists_generator
Finset.card_le_card
mem_multiples_iff_mem_zmultiples
Finite.of_fintype
Set.mem_toFinset
natCast_zsmul
mul_nsmul
Nat.card_eq_fintype_card
addOrderOf_eq_card_of_forall_mem_zmultiples
addOrderOf_dvd_of_nsmul_eq_zero
gcd_nsmul_eq_zero
card_nsmul_eq_zero
Finset.mem_filter
Fintype.card_eq_zero_iff
MulZeroClass.mul_zero
Set.toFinset_card
Fintype.card_zmultiples
addOrderOf_nsmul
commutative 📖mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
exists_generator
zsmul_add_comm
exists_addMonoid_generator 📖mathematicalAddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.multiples
mem_multiples_iff_mem_zmultiples
exists_generator
exists_generator 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
exists_zsmul_surjective
exists_ofOrder_eq_natCard 📖mathematicaladdOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Nat.card
exists_generator
Nat.card_zmultiples
AddSubgroup.eq_top_iff'
Nat.card_congr
exponent_eq_card 📖mathematicalAddMonoid.exponent
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Nat.card
exists_ofOrder_eq_natCard
AddGroup.exponent_dvd_nat_card
AddMonoid.addOrder_dvd_exponent
exponent_eq_zero_of_infinite 📖mathematicalAddMonoid.exponent
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
exists_generator
AddMonoid.exponent_eq_zero_addOrder_zero
Infinite.addOrderOf_eq_zero_of_forall_mem_zmultiples
ext 📖Nat.card
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
ZMod.val
LT.lt.ne'
Nat.card_pos
Zero.instNonempty
exists_generator
ZMod.natCast_val
ZMod.cast_id'
ZMod.natCast_eq_natCast_iff
addOrderOf_eq_card_of_forall_mem_zmultiples
nsmul_eq_nsmul_iff_modEq
iff_exponent_eq_card 📖mathematicalIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoid.exponent
SubNegMonoid.toAddMonoid
Nat.card
exponent_eq_card
of_exponent_eq_card
image_range_addOrderOf 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
Finset.image
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Finset.range
addOrderOf
Finset.univ
image_range_addOrderOf
Set.toFinset_congr
Set.eq_univ_iff_forall
Set.toFinset_univ
image_range_card 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
Finset.image
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Finset.range
Nat.card
Finset.univ
addOrderOf_eq_card_of_forall_mem_zmultiples
image_range_addOrderOf
index_nsmulAddMonoidHom_ker 📖mathematicalAddSubgroup.index
AddCommGroup.toAddGroup
AddMonoidHom.ker
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
nsmulAddMonoidHom
AddCommGroup.toAddCommMonoid
Nat.card
AddSubgroup.index_ker
card_nsmulAddMonoidHom_range
index_nsmulAddMonoidHom_range 📖mathematicalAddSubgroup.index
AddCommGroup.toAddGroup
AddMonoidHom.range
nsmulAddMonoidHom
AddCommGroup.toAddCommMonoid
Nat.card
AddSubgroup.index_range
AddSubgroup.finiteIndex_ker
AddSubgroup.instFiniteSubtypeMem
card_nsmulAddMonoidHom_ker
of_exponent_eq_card 📖mathematicalAddMonoid.exponent
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Nat.card
IsAddCyclic
SubNegMonoid.toZSMul
nonempty_fintype
Finset.mem_image
Finset.max'_mem
isAddCyclic_of_addOrderOf_eq_card
AddMonoid.exponent_eq_max'_addOrderOf
unique_zsmul_zmod 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
ExistsUnique
ZMod
Fintype.card
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
ZMod.val
natCast_zsmul
zsmul_eq_zsmul_iff_modEq
addOrderOf_eq_card_of_forall_mem_zmultiples
Int.modEq_comm
Int.modEq_iff_add_fac
Nat.card_eq_fintype_card
ZMod.intCast_eq_iff
Fintype.instNeZeroNatCardOfNonempty
Zero.instNonempty
ZMod.intCast_eq_intCast_iff
ZMod.natCast_val
ZMod.intCast_cast
ZMod.cast_id'

IsCyclic

Definitions

NameCategoryTheorems
commGroup 📖CompOp
mulAutMulEquiv 📖CompOp
4 mathmath: val_mulAutMulEquiv_apply, val_inv_mulAutMulEquiv_apply, mulAutMulEquiv_symm_apply_symm_apply, mulAutMulEquiv_symm_apply_apply

Theorems

NameKindAssumesProvesValidatesDepends On
card_mulAut 📖mathematicalNat.card
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Nat.totient
LT.lt.ne'
Nat.card_pos
One.instNonempty
ZMod.card_units_eq_totient
Nat.card_eq_fintype_card
Nat.card_congr
card_orderOf_eq_totient 📖mathematicalFintype.cardFinset.card
Finset.filter
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Finset.univ
Nat.totient
card_orderOf_eq_totient_aux₂
card_pow_eq_one_le
card_powMonoidHom_ker 📖mathematicalNat.card
Subgroup
CommGroup.toGroup
SetLike.instMembership
Subgroup.instSetLike
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
powMonoidHom
CommGroup.toCommMonoid
Subgroup.index_ne_zero_of_finite
Subgroup.finite_quotient_of_finiteIndex
Subgroup.finiteIndex_ker
Subgroup.instFiniteSubtypeMem
mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
Nat.instIsCancelMulZero
Subgroup.card_mul_index
index_powMonoidHom_ker
card_powMonoidHom_range 📖mathematicalNat.card
Subgroup
CommGroup.toGroup
SetLike.instMembership
Subgroup.instSetLike
MonoidHom.range
powMonoidHom
CommGroup.toCommMonoid
isCyclic_iff_exists_zpowers_eq_top
MonoidHom.range_eq_map
MonoidHom.map_zpowers
Nat.card_zpowers
powMonoidHom_apply
orderOf_pow
orderOf_eq_card_of_zpowers_eq_top
card_pow_eq_one_le 📖mathematicalFinset.card
Finset.filter
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Finset.univ
exists_generator
Finset.card_le_card
mem_powers_iff_mem_zpowers
Finite.of_fintype
Set.mem_toFinset
zpow_natCast
pow_mul
Nat.card_eq_fintype_card
orderOf_eq_card_of_forall_mem_zpowers
orderOf_dvd_of_pow_eq_one
pow_card_eq_one
Finset.mem_filter
Fintype.card_eq_zero_iff
MulZeroClass.mul_zero
Set.toFinset_card
Fintype.card_zpowers
orderOf_pow
commutative 📖mathematicalMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
exists_generator
zpow_mul_comm
exists_generator 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
exists_zpow_surjective
exists_monoid_generator 📖mathematicalSubmonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.instMembership
Submonoid.instSetLike
Submonoid.powers
exists_generator
exists_ofOrder_eq_natCard 📖mathematicalorderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Nat.card
exists_generator
Nat.card_zpowers
Subgroup.eq_top_iff'
Nat.card_congr
exponent_eq_card 📖mathematicalMonoid.exponent
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Nat.card
exists_ofOrder_eq_natCard
Group.exponent_dvd_nat_card
Monoid.order_dvd_exponent
exponent_eq_zero_of_infinite 📖mathematicalMonoid.exponent
DivInvMonoid.toMonoid
Group.toDivInvMonoid
exists_generator
Monoid.exponent_eq_zero_of_order_zero
Infinite.orderOf_eq_zero_of_forall_mem_zpowers
ext 📖Nat.card
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ZMod.val
LT.lt.ne'
Nat.card_pos
One.instNonempty
exists_generator
ZMod.natCast_val
ZMod.cast_id'
ZMod.natCast_eq_natCast_iff
orderOf_eq_card_of_forall_mem_zpowers
pow_eq_pow_iff_modEq
iff_exponent_eq_card 📖mathematicalIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
Monoid.exponent
DivInvMonoid.toMonoid
Nat.card
exponent_eq_card
of_exponent_eq_card
image_range_card 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
Finset.image
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Finset.range
Nat.card
Finset.univ
orderOf_eq_card_of_forall_mem_zpowers
image_range_orderOf
image_range_orderOf 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
Finset.image
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Finset.range
orderOf
Finset.univ
image_range_orderOf
Set.toFinset_congr
Set.eq_univ_iff_forall
Set.toFinset_univ
index_powMonoidHom_ker 📖mathematicalSubgroup.index
CommGroup.toGroup
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
powMonoidHom
CommGroup.toCommMonoid
Nat.card
Subgroup.index_ker
card_powMonoidHom_range
index_powMonoidHom_range 📖mathematicalSubgroup.index
CommGroup.toGroup
MonoidHom.range
powMonoidHom
CommGroup.toCommMonoid
Nat.card
Subgroup.index_range
Subgroup.finiteIndex_ker
Subgroup.instFiniteSubtypeMem
card_powMonoidHom_ker
mulAutMulEquiv_symm_apply_apply 📖mathematicalDFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
Units
ZMod
Nat.card
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
MulAut
Units.instMul
MulAut.instGroup
MulEquiv.symm
mulAutMulEquiv
Multiplicative
Multiplicative.group
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
zmodCyclicMulEquiv
Equiv
Equiv.instEquivLike
Multiplicative.ofAdd
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Units.instGroup
Units.instDistribMulAction
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Multiplicative.toAdd
Multiplicative.mul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
mulAutMulEquiv_symm_apply_symm_apply 📖mathematicalDFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
Units
ZMod
Nat.card
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
MulAut
Units.instMul
MulAut.instGroup
mulAutMulEquiv
Multiplicative
Multiplicative.group
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
zmodCyclicMulEquiv
Equiv
Equiv.instEquivLike
Multiplicative.ofAdd
SemigroupAction.toSMul
Monoid.toSemigroup
Units.instGroup
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Units.instDistribMulAction
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Multiplicative.toAdd
of_exponent_eq_card 📖mathematicalMonoid.exponent
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Nat.card
IsCyclic
DivInvMonoid.toZPow
nonempty_fintype
Finset.mem_image
Finset.max'_mem
isCyclic_of_orderOf_eq_card
Monoid.exponent_eq_max'_orderOf
unique_zpow_zmod 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
ExistsUnique
ZMod
Fintype.card
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ZMod.val
zpow_natCast
zpow_eq_zpow_iff_modEq
orderOf_eq_card_of_forall_mem_zpowers
Int.modEq_comm
Int.modEq_iff_add_fac
Nat.card_eq_fintype_card
ZMod.intCast_eq_iff
Fintype.instNeZeroNatCardOfNonempty
One.instNonempty
ZMod.intCast_eq_intCast_iff
ZMod.natCast_val
ZMod.intCast_cast
ZMod.cast_id'
val_inv_mulAutMulEquiv_apply 📖mathematicalUnits.val
ZMod
Nat.card
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
Units
Units.instInv
DFunLike.coe
MulEquiv
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
mulAutMulEquiv
Equiv
Multiplicative
Equiv.instEquivLike
Multiplicative.toAdd
Multiplicative.mul
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MulEquiv.symm
zmodCyclicMulEquiv
Multiplicative.ofAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
val_mulAutMulEquiv_apply 📖mathematicalUnits.val
ZMod
Nat.card
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
DFunLike.coe
MulEquiv
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Units
MulAut.instGroup
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
mulAutMulEquiv
Equiv
Multiplicative
Equiv.instEquivLike
Multiplicative.toAdd
Multiplicative.group
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MulEquiv.symm
zmodCyclicMulEquiv
Multiplicative.ofAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne

IsSimpleAddGroup

Theorems

NameKindAssumesProvesValidatesDepends On
finite 📖mathematicalFiniteNat.finite_of_card_ne_zero
Nat.Prime.ne_zero
prime_card
isAddCyclic 📖mathematicalIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
exists_ne
toNontrivial
IsSimpleOrder.eq_bot_or_eq_top
instIsSimpleOrderAddSubgroup
AddSubgroup.zmultiples_ne_bot
AddSubgroup.eq_top_iff'
prime_card 📖mathematicalNat.Prime
Nat.card
toNontrivial
IsAddCyclic.exists_generator
isAddCyclic
Mathlib.Tactic.Contrapose.contrapose₃
not_nontrivial_iff_subsingleton
Nat.card_eq_one_iff_unique
addOrderOf_eq_card_of_forall_mem_zmultiples
AddSubgroup.zmultiples_eq_bot
addOrderOf_dvd_iff_nsmul_eq_zero
AddSubgroup.mem_top
natCast_zsmul
mem_zmultiples_zsmul_iff
IsSimpleOrder.eq_bot_or_eq_top
instIsSimpleOrderAddSubgroup
Nat.prime_of_coprime
Mathlib.Tactic.Push.not_forall_eq
zero_dvd_iff
Nat.instAtLeastTwoHAddOfNat
OfNat.ofNat_ne_zero
Nat.instCharZero
OfNat.ofNat_ne_one

IsSimpleGroup

Theorems

NameKindAssumesProvesValidatesDepends On
finite 📖mathematicalFiniteNat.finite_of_card_ne_zero
Nat.Prime.ne_zero
prime_card
isCyclic 📖mathematicalIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
exists_ne
toNontrivial
IsSimpleOrder.eq_bot_or_eq_top
instIsSimpleOrderSubgroup
Subgroup.zpowers_ne_bot
Subgroup.eq_top_iff'
prime_card 📖mathematicalNat.Prime
Nat.card
toNontrivial
IsCyclic.exists_generator
isCyclic
Mathlib.Tactic.Contrapose.contrapose₃
Nat.card_eq_one_iff_unique
orderOf_eq_card_of_forall_mem_zpowers
zpow_natCast
mem_zpowers_zpow_iff
IsSimpleOrder.eq_bot_or_eq_top
instIsSimpleOrderSubgroup
Nat.prime_of_coprime
Mathlib.Tactic.Push.not_forall_eq
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat

LinearOrderedAddCommGroup

Theorems

NameKindAssumesProvesValidatesDepends On
isAddCyclic_iff_nonempty_equiv_int 📖mathematicalIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
OrderAddMonoidIso
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLatticeInt
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
exists_ne
instIsAddTorsionFreeOfAddLeftStrictMonoOfAddRightStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
injective_zsmul_iff_not_isOfFinAddOrder
not_isOfFinAddOrder_of_isAddTorsionFree
add_zsmul
zsmul_le_zsmul_iff_left
smul_neg
neg_surjective
AddEquiv.isAddCyclic
instIsAddCyclicInt

LinearOrderedCommGroup

Theorems

NameKindAssumesProvesValidatesDepends On
isCyclic_iff_nonempty_equiv_int 📖mathematicalIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
OrderMonoidIso
Multiplicative
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Multiplicative.preorder
instLatticeInt
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Multiplicative.mul
isAddCyclic_additive_iff
LinearOrderedAddCommGroup.isAddCyclic_iff_nonempty_equiv_int
Additive.isOrderedAddMonoid
Additive.instNontrivial
Equiv.nonempty_congr

MonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
eq_iff_eq_on_generator 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instFunLike
DFunLike.ext_iff
Subgroup.mem_zpowers_iff
map_zpow
instMonoidHomClass
map_cyclic 📖mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instFunLike
DivInvMonoid.toZPow
IsCyclic.exists_generator
map_zpow
instMonoidHomClass
zpow_mul
zpow_mul'

MulDistribMulAction

Definitions

NameCategoryTheorems
toMonoidHomZModOfIsCyclic 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
toMonoidHomZModOfIsCyclic_apply 📖mathematicalNat.card
DFunLike.coe
MonoidHom
ZMod
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
MonoidHom.instFunLike
toMonoidHomZModOfIsCyclic
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivInvMonoid.toZPow
toMonoidHom_apply
MonoidHom.map_cyclic
zpow_eq_zpow_iff_modEq
Int.ModEq.of_dvd
orderOf_dvd_natCard
ZMod.intCast_eq_intCast_iff

MulEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
eq_iff_eq_on_generator 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
instEquivLike
toMonoidHom_injective
MonoidHom.eq_iff_eq_on_generator
isCyclic 📖mathematicalIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
isCyclic_of_surjective
MulEquivClass.instMonoidHomClass
instMulEquivClass
surjective

Nontrivial

Theorems

NameKindAssumesProvesValidatesDepends On
of_not_isAddCyclic 📖mathematicalIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NontrivialMathlib.Tactic.Contrapose.contrapose₂
not_nontrivial_iff_subsingleton
isAddCyclic_of_subsingleton
of_not_isCyclic 📖mathematicalIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
NontrivialMathlib.Tactic.Contrapose.contrapose₂
isCyclic_of_subsingleton

Subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
eq_bot_or_eq_top_of_prime_card 📖mathematicalBot.bot
Subgroup
instBot
Top.top
instTop
Nat.finite_of_card_ne_zero
Nat.Prime.ne_zero
Fact.out
card_subgroup_dvd_card
card_eq_iff_eq_top
instFiniteSubtypeMem
eq_bot_iff_card
Nat.dvd_prime
isCyclic 📖mathematicalIsCyclic
Subgroup
SetLike.instMembership
instSetLike
zpow
IsCyclic.exists_generator
zpow_zero
zpow_natCast
inv_mem_iff
zpow_negSucc
Nat.find_spec
zpow_mul
zpow_mem
mul_mem_cancel_right
zpow_add
by_contradiction
Nat.find_min
ext
mem_bot
one_mem
Bot.isCyclic
isCyclic_iff_exists_zpowers_eq_top 📖mathematicalIsCyclic
Subgroup
SetLike.instMembership
instSetLike
zpow
zpowers
isCyclic_iff_exists_zpowers_eq_top
map_injective
subtype_injective
range_subtype
MonoidHom.map_zpowers
mem_zpowers
isCyclic_of_le 📖mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IsCyclic
SetLike.instMembership
instSetLike
zpow
isCyclic_of_injective
inclusion_injective
isCyclic_zpowers 📖mathematicalIsCyclic
Subgroup
SetLike.instMembership
instSetLike
zpowers
zpow
isCyclic_iff_exists_zpowers_eq_top
le_zpowers_iff 📖mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
zpowers
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
isCyclic_iff_exists_zpowers_eq_top
isCyclic_of_le
isCyclic_zpowers
mem_zpowers_iff
mem_zpowers
zpow_natCast
zpow_neg
zpowers_inv
zpowers_le_of_mem
npow_mem_zpowers

ZMod

Theorems

NameKindAssumesProvesValidatesDepends On
exponent 📖mathematicalAddMonoid.exponent
ZMod
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
commRing
IsAddCyclic.exponent_eq_card
instIsAddCyclic
Nat.card_zmod
instIsAddCyclic 📖mathematicalIsAddCyclic
ZMod
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
commRing
isAddCyclic_of_surjective
instIsAddCyclicInt
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
intCast_surjective
instIsSimpleAddGroup 📖mathematicalIsSimpleAddGroup
ZMod
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
commRing
AddCommGroup.is_simple_iff_prime_card
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
Nat.card_eq_fintype_card
card
Fact.out

(root)

Definitions

NameCategoryTheorems
addCommGroupOfAddCyclicCenterQuotient 📖CompOp
addEquivOfAddCyclicCardEq 📖CompOp
addEquivOfAddOrderOfEq 📖CompOp
3 mathmath: addEquivOfAddOrderOfEq_apply_gen, addEquivOfAddOrderOfEq_symm_apply_gen, addEquivOfAddOrderOfEq_symm
addEquivOfPrimeCardEq 📖CompOp
addMonoidHomOfForallMemZMultiples 📖CompOp
1 mathmath: addMonoidHomOfForallMemZMultiples_apply_gen
commGroupOfCyclicCenterQuotient 📖CompOp
monoidHomOfForallMemZpowers 📖CompOp
1 mathmath: monoidHomOfForallMemZpowers_apply_gen
mulEquivOfCyclicCardEq 📖CompOp
mulEquivOfOrderOfEq 📖CompOp
3 mathmath: mulEquivOfOrderOfEq_symm_apply_gen, mulEquivOfOrderOfEq_symm, mulEquivOfOrderOfEq_apply_gen
mulEquivOfPrimeCardEq 📖CompOp
zmodAddCyclicAddEquiv 📖CompOp
zmodCyclicMulEquiv 📖CompOp
4 mathmath: IsCyclic.val_mulAutMulEquiv_apply, IsCyclic.val_inv_mulAutMulEquiv_apply, IsCyclic.mulAutMulEquiv_symm_apply_symm_apply, IsCyclic.mulAutMulEquiv_symm_apply_apply

Theorems

NameKindAssumesProvesValidatesDepends On
addEquivOfAddOrderOfEq_apply_gen 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DFunLike.coe
AddEquiv
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
EquivLike.toFunLike
AddEquiv.instEquivLike
addEquivOfAddOrderOfEq
addMonoidHomOfForallMemZMultiples_apply_gen
Eq.dvd
addEquivOfAddOrderOfEq_symm 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddEquiv.symm
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addEquivOfAddOrderOfEq
addEquivOfAddOrderOfEq_symm_apply_gen 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DFunLike.coe
AddEquiv
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
addEquivOfAddOrderOfEq
addMonoidHomOfForallMemZMultiples_apply_gen
Eq.dvd
addMonoidHomOfForallMemZMultiples_apply_gen 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
addMonoidHomOfForallMemZMultiples
one_zsmul
zsmul_eq_zsmul_iff_modEq
Int.ModEq.of_dvd
AddSubgroup.mem_zmultiples_iff
addOrderOf_eq_card_of_forall_mem_multiples 📖mathematicalAddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.multiples
addOrderOf
Nat.card
addOrderOf_eq_card_of_forall_mem_zmultiples
AddSubmonoid.multiples_le_zmultiples
addOrderOf_eq_card_of_forall_mem_zmultiples 📖mathematicalAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Nat.card
Nat.card_zmultiples
AddSubgroup.eq_top_iff'
AddSubgroup.card_top
addOrderOf_eq_card_of_zmultiples_eq_top 📖mathematicalAddSubgroup.zmultiples
Top.top
AddSubgroup
AddSubgroup.instTop
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Nat.card
addOrderOf_eq_card_of_forall_mem_zmultiples
Eq.ge
AddSubgroup.mem_top
card_addOrderOf_eq_totient_aux₂ 📖mathematicalFinset.card
Finset.filter
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Finset.univ
Fintype.card
addOrderOf
Nat.totient
Fintype.card_pos_iff
lt_irrefl
sum_card_addOrderOf_eq_card_nsmul_eq_zero
LT.lt.ne'
Finset.filter.congr_simp
card_nsmul_eq_zero
Finset.filter_true
Finset.sum_subset
Finset.erase_subset
Mathlib.Tactic.Contrapose.contrapose₂
Finset.mem_erase_of_ne_of_mem
Finset.card_eq_zero
not_lt
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finset.mem_erase
Nat.mem_divisors
zero_le
Nat.instCanonicallyOrderedAdd
le_refl
Finset.sum_erase_lt_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.totient_pos
Nat.sum_totient
card_orderOf_eq_totient_aux₂ 📖mathematicalFinset.card
Finset.filter
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Finset.univ
Fintype.card
orderOf
Nat.totient
Fintype.card_pos_iff
lt_irrefl
sum_card_orderOf_eq_card_pow_eq_one
LT.lt.ne'
Finset.filter.congr_simp
pow_card_eq_one
Finset.filter_true
Finset.sum_subset
Finset.erase_subset
Mathlib.Tactic.Contrapose.contrapose₂
Finset.mem_erase_of_ne_of_mem
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instCanonicallyOrderedAdd
Finset.sum_erase_lt_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.mem_divisors
Nat.totient_pos
Nat.sum_totient
commutative_of_addCyclic_center_quotient 📖mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddMonoidHom.ker
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup.center
AddZero.toAdd
AddZeroClass.toAddZero
IsAddCyclic.exists_generator
AddSubgroup.isAddCyclic
AddMonoidHom.mem_ker
AddMonoidHom.map_add
AddMonoidHom.map_zsmul
neg_zsmul
neg_add_cancel
add_assoc
add_neg_cancel_left
AddSubgroup.mem_center_iff
add_zsmul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_zero
zero_zsmul
zero_add
commutative_of_cyclic_center_quotient 📖mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.center
MulOne.toMul
MulOneClass.toMulOne
IsCyclic.exists_generator
Subgroup.isCyclic
MonoidHom.mem_ker
MonoidHom.map_mul
MonoidHom.map_zpow
zpow_neg
inv_mul_cancel
mul_assoc
mul_inv_cancel_left
Subgroup.mem_center_iff
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_zero
zpow_zero
one_mul
coprime_card_of_isAddCyclic_prod 📖mathematicalNat.cardisAddCyclic_left_of_prod
isAddCyclic_right_of_prod
IsAddCyclic.iff_exponent_eq_card
LT.lt.ne'
Nat.card_pos
Zero.instNonempty
lcm_eq_nat_lcm
Nat.card_prod
AddMonoid.exponent_prod
Finite.instProd
coprime_card_of_isCyclic_prod 📖mathematicalNat.cardisCyclic_left_of_prod
isCyclic_right_of_prod
IsCyclic.iff_exponent_eq_card
LT.lt.ne'
Nat.card_pos
One.instNonempty
lcm_eq_nat_lcm
Nat.card_prod
Monoid.exponent_prod
Finite.instProd
exists_nsmul_ne_zero_of_isAddCyclic 📖Nat.cardNat.finite_of_card_ne_zero
Mathlib.Tactic.Contrapose.contrapose₃
not_lt
Nat.card_zmultiples
AddSubgroup.card_eq_iff_eq_top
AddSubgroup.instFiniteSubtypeMem
eq_top_iff
addOrderOf_le_of_nsmul_eq_zero
Ne.bot_lt
exists_pow_ne_one_of_isCyclic 📖Nat.cardNat.finite_of_card_ne_zero
Mathlib.Tactic.Contrapose.contrapose₃
Nat.card_zpowers
Subgroup.card_eq_iff_eq_top
Subgroup.instFiniteSubtypeMem
eq_top_iff
orderOf_le_of_pow_eq_one
Ne.bot_lt
exists_prime_addEquiv_ZMod 📖mathematicalNat.Prime
AddEquiv
Additive
ZMod
Additive.add
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
isCyclic_iff_exists_zpowers_eq_top
IsSimpleGroup.isCyclic
orderOf_eq_card_of_zpowers_eq_top
IsSimpleGroup.prime_card
isAddCyclic_additive
instIsAddCyclicInt 📖mathematicalIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Int.instAddGroup
mul_one
instIsCyclicUnitsWithZero 📖mathematicalIsCyclic
Units
WithZero
MonoidWithZero.toMonoid
WithZero.instMonoidWithZero
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivInvMonoid.toZPow
Units.instDivInvMonoid
isCyclic_of_injective
Equiv.injective
instIsMulCommutativeSubtypeMemSubgroupOfIsCyclic 📖mathematicalIsMulCommutative
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.mul
IsCyclic.commutative
isAddCyclic_additive 📖mathematicalIsAddCyclic
Additive
SubNegMonoid.toZSMul
Additive.subNegMonoid
Group.toDivInvMonoid
isAddCyclic_additive_iff
isAddCyclic_additive_iff 📖mathematicalIsAddCyclic
Additive
SubNegMonoid.toZSMul
Additive.subNegMonoid
IsCyclic
DivInvMonoid.toZPow
IsAddCyclic.exists_zsmul_surjective
IsCyclic.exists_zpow_surjective
isAddCyclic_iff_exists_addOrderOf_eq_natCard 📖mathematicalIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
addOrderOf
SubNegMonoid.toAddMonoid
Nat.card
isAddCyclic_iff_exists_zmultiples_eq_top
AddSubgroup.card_eq_iff_eq_top
AddSubgroup.instFiniteSubtypeMem
Nat.card_zmultiples
isAddCyclic_iff_exists_natCard_le_addOrderOf 📖mathematicalIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Nat.card
addOrderOf
SubNegMonoid.toAddMonoid
isAddCyclic_iff_exists_addOrderOf_eq_natCard
Eq.ge
le_antisymm
addOrderOf_le_card
isAddCyclic_iff_exists_zmultiples_eq_top 📖mathematicalIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddSubgroup.zmultiples
Top.top
AddSubgroup
AddSubgroup.instTop
AddSubgroup.eq_top_iff'
AddSubgroup.mem_zmultiples_iff
isAddCyclic_left_of_prod 📖mathematicalIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
isAddCyclic_of_surjective
AddMonoidHom.instAddMonoidHomClass
Prod.fst_surjective
Zero.instNonempty
isAddCyclic_of_addOrderOf_eq_card 📖mathematicaladdOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Nat.card
IsAddCyclic
SubNegMonoid.toZSMul
isAddCyclic_iff_exists_addOrderOf_eq_natCard
isAddCyclic_of_card_dvd_prime 📖mathematicalNat.cardIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Nat.dvd_prime
Fact.out
isAddCyclic_of_subsingleton
Nat.card_eq_one_iff_unique
isAddCyclic_of_prime_card
isAddCyclic_of_card_le_addOrderOf 📖mathematicalNat.card
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
IsAddCyclic
SubNegMonoid.toZSMul
isAddCyclic_iff_exists_natCard_le_addOrderOf
isAddCyclic_of_card_nsmul_eq_zero_le 📖mathematicalFinset.card
Finset.filter
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Finset.univ
IsAddCyclic
SubNegMonoid.toZSMul
Finset.card_pos
Nat.card_eq_fintype_card
card_addOrderOf_eq_totient_aux₂
dvd_rfl
Nat.totient_pos
Fintype.card_pos
Zero.instNonempty
isAddCyclic_of_addOrderOf_eq_card
Finite.of_fintype
Finset.mem_filter
isAddCyclic_of_injective 📖mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoidHom.instFunLike
IsAddCyclic
SubNegMonoid.toZSMul
isAddCyclic_of_surjective
AddSubgroup.isAddCyclic
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
AddEquiv.surjective
isAddCyclic_of_prime_card 📖mathematicalNat.cardIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Nat.finite_of_card_ne_zero
Nat.Prime.ne_zero
Fact.out
Finite.one_lt_card_iff_nontrivial
Nat.Prime.one_lt
exists_ne
mem_zmultiples_of_prime_card
isAddCyclic_of_subsingleton 📖mathematicalIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
isAddCyclic_of_surjective 📖mathematicalDFunLike.coeIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
map_zsmul
isAddCyclic_right_of_prod 📖mathematicalIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
isAddCyclic_of_surjective
AddMonoidHom.instAddMonoidHomClass
Prod.snd_surjective
Zero.instNonempty
isCyclic_iff_exists_natCard_le_orderOf 📖mathematicalIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
Nat.card
orderOf
DivInvMonoid.toMonoid
isCyclic_iff_exists_orderOf_eq_natCard
Eq.ge
le_antisymm
orderOf_le_card
isCyclic_iff_exists_orderOf_eq_natCard 📖mathematicalIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
orderOf
DivInvMonoid.toMonoid
Nat.card
Subgroup.instFiniteSubtypeMem
Nat.card_zpowers
isCyclic_iff_exists_zpowers_eq_top 📖mathematicalIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
Subgroup.zpowers
Top.top
Subgroup
Subgroup.instTop
isCyclic_left_of_prod 📖mathematicalIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
isCyclic_of_surjective
MonoidHom.instMonoidHomClass
Prod.fst_surjective
One.instNonempty
isCyclic_multiplicative 📖mathematicalIsCyclic
Multiplicative
DivInvMonoid.toZPow
Multiplicative.divInvMonoid
AddGroup.toSubNegMonoid
isCyclic_multiplicative_iff
isCyclic_multiplicative_iff 📖mathematicalIsCyclic
Multiplicative
DivInvMonoid.toZPow
Multiplicative.divInvMonoid
IsAddCyclic
SubNegMonoid.toZSMul
IsCyclic.exists_zpow_surjective
IsAddCyclic.exists_zsmul_surjective
isCyclic_of_card_dvd_prime 📖mathematicalNat.cardIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
Nat.dvd_prime
Fact.out
isCyclic_of_subsingleton
Nat.card_eq_one_iff_unique
isCyclic_of_prime_card
isCyclic_of_card_le_orderOf 📖mathematicalNat.card
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
IsCyclic
DivInvMonoid.toZPow
isCyclic_iff_exists_natCard_le_orderOf
isCyclic_of_card_pow_eq_one_le 📖mathematicalFinset.card
Finset.filter
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Finset.univ
IsCyclic
DivInvMonoid.toZPow
Finset.card_pos
Nat.card_eq_fintype_card
card_orderOf_eq_totient_aux₂
dvd_rfl
Nat.totient_pos
Fintype.card_pos
One.instNonempty
isCyclic_of_orderOf_eq_card
Finite.of_fintype
Finset.mem_filter
isCyclic_of_injective 📖mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
IsCyclic
DivInvMonoid.toZPow
isCyclic_of_surjective
Subgroup.isCyclic
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
MulEquiv.surjective
isCyclic_of_orderOf_eq_card 📖mathematicalorderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Nat.card
IsCyclic
DivInvMonoid.toZPow
isCyclic_iff_exists_orderOf_eq_natCard
isCyclic_of_prime_card 📖mathematicalNat.cardIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
Nat.finite_of_card_ne_zero
Nat.Prime.ne_zero
Fact.out
Finite.one_lt_card_iff_nontrivial
Nat.Prime.one_lt
exists_ne
mem_zpowers_of_prime_card
isCyclic_of_subsingleton 📖mathematicalIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
isCyclic_of_surjective 📖mathematicalDFunLike.coeIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
map_zpow
isCyclic_right_of_prod 📖mathematicalIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
isCyclic_of_surjective
MonoidHom.instMonoidHomClass
Prod.snd_surjective
One.instNonempty
isSimpleAddGroup_of_prime_card 📖mathematicalNat.cardIsSimpleAddGroupNat.finite_of_card_ne_zero
Nat.Prime.ne_zero
Fact.out
Finite.one_lt_card_iff_nontrivial
Nat.Prime.one_lt
AddSubgroup.eq_bot_or_eq_top_of_prime_card
isSimpleGroup_of_prime_card 📖mathematicalNat.cardIsSimpleGroupNat.finite_of_card_ne_zero
Nat.Prime.ne_zero
Fact.out
Finite.one_lt_card_iff_nontrivial
Nat.Prime.one_lt
Subgroup.eq_bot_or_eq_top_of_prime_card
mem_multiples_of_prime_card 📖mathematicalNat.cardAddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.multiples
Nat.finite_of_card_ne_zero
Nat.Prime.ne_zero
Fact.out
mem_multiples_iff_mem_zmultiples
mem_zmultiples_of_prime_card
mem_powers_of_prime_card 📖mathematicalNat.cardSubmonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.instMembership
Submonoid.instSetLike
Submonoid.powers
Nat.finite_of_card_ne_zero
Nat.Prime.ne_zero
Fact.out
mem_powers_iff_mem_zpowers
mem_zpowers_of_prime_card
mem_zmultiples_of_prime_card 📖mathematicalNat.cardAddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
zmultiples_eq_top_of_prime_card
AddSubgroup.mem_top
mem_zpowers_of_prime_card 📖mathematicalNat.cardSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
zpowers_eq_top_of_prime_card
monoidHomOfForallMemZpowers_apply_gen 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
monoidHomOfForallMemZpowers
zpow_one
zpow_eq_zpow_iff_modEq
Int.ModEq.of_dvd
Subgroup.mem_zpowers_iff
mulEquivOfOrderOfEq_apply_gen 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
mulEquivOfOrderOfEq
monoidHomOfForallMemZpowers_apply_gen
Eq.dvd
mulEquivOfOrderOfEq_symm 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulEquiv.symm
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
mulEquivOfOrderOfEq
mulEquivOfOrderOfEq_symm_apply_gen 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
mulEquivOfOrderOfEq
monoidHomOfForallMemZpowers_apply_gen
Eq.dvd
multiples_eq_top_of_prime_card 📖mathematicalNat.cardAddSubmonoid.multiples
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Top.top
AddSubmonoid
AddMonoid.toAddZeroClass
AddSubmonoid.instTop
AddSubmonoid.ext
mem_multiples_of_prime_card
AddSubmonoid.mem_top
not_isAddCyclic_iff_exponent_eq_prime 📖mathematicalNat.Prime
Nat.card
Monoid.toNatPow
Nat.instMonoid
IsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddMonoid.exponent
SubNegMonoid.toAddMonoid
Nat.finite_of_card_ne_zero
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.Prime.ne_zero
Finite.one_lt_card_iff_nontrivial
one_lt_pow₀
Nat.instZeroLEOneClass
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.Prime.one_lt
two_ne_zero
AddMonoid.exponent_eq_prime_iff
Nat.mem_divisors
addOrderOf_dvd_natCard
Nat.instAtLeastTwoHAddOfNat
OfNat.ofNat_ne_zero
Nat.instCharZero
Nat.prime_zero_false
Nat.pow_right_injective
Nat.Prime.two_le
Nat.divisors_prime_pow
Finset.mem_map
Finset.mem_range
isAddCyclic_of_addOrderOf_eq_card
le_antisymm
Mathlib.Tactic.IntervalCases.of_lt_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_ofNat
pow_one
AddMonoid.addOrderOf_eq_one_iff
pow_zero
eq_zero_or_one_of_sq_eq_self
IsCancelMulZero.toIsRightCancelMulZero
Nat.instIsCancelMulZero
IsAddCyclic.exponent_eq_card
Nat.not_prime_zero
Nat.not_prime_one
not_isAddCyclic_prod_of_infinite_nontrivial 📖mathematicalIsAddCyclic
SubNegMonoid.toZSMul
Prod.subNegMonoid
AddGroup.toSubNegMonoid
finite_or_infinite
dvd_zero
ZMod.charP
ZMod.castHom_surjective
isAddCyclic_of_surjective
Nat.card_eq_zero_of_infinite
AddEquiv.isAddCyclic
isAddCyclic_left_of_prod
isAddCyclic_right_of_prod
AddMonoidHom.instAddMonoidHomClass
Prod.map_surjective
Nat.card_eq_fintype_card
ZMod.card
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
coprime_card_of_isAddCyclic_prod
Finite.of_fintype
LT.lt.ne'
Nat.card_pos
Nontrivial.to_nonempty
Finite.one_lt_card
not_isCyclic_iff_exponent_eq_prime 📖mathematicalNat.Prime
Nat.card
Monoid.toNatPow
Nat.instMonoid
IsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
Monoid.exponent
DivInvMonoid.toMonoid
Nat.finite_of_card_ne_zero
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.Prime.ne_zero
Finite.one_lt_card_iff_nontrivial
one_lt_pow₀
Nat.instZeroLEOneClass
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.Prime.one_lt
two_ne_zero
Monoid.exponent_eq_prime_iff
Nat.mem_divisors
orderOf_dvd_natCard
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
Nat.prime_zero_false
Nat.pow_right_injective
Nat.Prime.two_le
Nat.divisors_prime_pow
isCyclic_of_orderOf_eq_card
le_antisymm
Mathlib.Tactic.IntervalCases.of_lt_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_ofNat
pow_one
orderOf_eq_one_iff
pow_zero
eq_zero_or_one_of_sq_eq_self
IsCancelMulZero.toIsRightCancelMulZero
Nat.instIsCancelMulZero
IsCyclic.exponent_eq_card
Nat.not_prime_zero
Nat.not_prime_one
not_isCyclic_prod_of_infinite_nontrivial 📖mathematicalIsCyclic
Prod.instPow
DivInvMonoid.toZPow
Group.toDivInvMonoid
isAddCyclic_additive_iff
AddEquiv.isAddCyclic
not_isAddCyclic_prod_of_infinite_nontrivial
instInfiniteAdditive
Additive.instNontrivial
orderOf_eq_card_of_forall_mem_powers 📖mathematicalSubmonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.instMembership
Submonoid.instSetLike
Submonoid.powers
orderOf
Nat.card
orderOf_eq_card_of_forall_mem_zpowers
Submonoid.powers_le_zpowers
orderOf_eq_card_of_forall_mem_zpowers 📖mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Nat.card
Nat.card_zpowers
Subgroup.eq_top_iff'
Subgroup.card_top
orderOf_eq_card_of_zpowers_eq_top 📖mathematicalSubgroup.zpowers
Top.top
Subgroup
Subgroup.instTop
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Nat.card
orderOf_eq_card_of_forall_mem_zpowers
Eq.ge
Subgroup.mem_top
powers_eq_top_of_prime_card 📖mathematicalNat.cardSubmonoid.powers
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Top.top
Submonoid
Monoid.toMulOneClass
Submonoid.instTop
Submonoid.ext
mem_powers_of_prime_card
zmultiplesHom_ker_eq 📖mathematicalAddMonoidHom.ker
Int.instAddGroup
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DFunLike.coe
Equiv
AddMonoidHom
AddZeroClass.toAddZero
Int.instAddMonoid
EquivLike.toFunLike
Equiv.instEquivLike
zmultiplesHom
AddSubgroup.zmultiples
addOrderOf
AddSubgroup.ext
zsmul_eq_mul'
zmultiples_eq_top_of_prime_card 📖mathematicalNat.cardAddSubgroup.zmultiples
Top.top
AddSubgroup
AddSubgroup.instTop
AddSubgroup.eq_bot_or_eq_top_of_prime_card
AddSubgroup.zmultiples_eq_bot
zpowersHom_ker_eq 📖mathematicalMonoidHom.ker
Multiplicative
Multiplicative.group
Int.instAddGroup
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
Equiv
MonoidHom
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Int.instAddMonoid
EquivLike.toFunLike
Equiv.instEquivLike
zpowersHom
Subgroup.zpowers
Multiplicative.ofAdd
orderOf
zmultiplesHom_ker_eq
zpowers_eq_top_of_prime_card 📖mathematicalNat.cardSubgroup.zpowers
Top.top
Subgroup
Subgroup.instTop
Subgroup.eq_bot_or_eq_top_of_prime_card
Subgroup.zpowers_eq_bot

---

← Back to Index