Documentation Verification Report

KleinFour

📁 Source: Mathlib/GroupTheory/SpecificGroups/KleinFour.lean

Statistics

MetricCount
DefinitionsIsAddKleinFour, addEquiv, addEquiv', IsKleinFour, mulEquiv, mulEquiv'
6
Theoremsadd_self, card_four, card_four', eq_add_of_ne_all, eq_finset_univ, exponent_two, instFinite, neg_eq_self, nonempty_addEquiv, not_isAddCyclic, card_four, card_four', eq_finset_univ, eq_mul_of_ne_all, exponent_two, instFinite, inv_eq_self, mul_self, nonempty_mulEquiv, not_isCyclic, instIsAddKleinFourAdditiveOfIsKleinFour, instIsAddKleinFourProdZModOfNatNat, instIsKleinFourMultiplicativeOfIsAddKleinFour
23
Total29

IsAddKleinFour

Definitions

NameCategoryTheorems
addEquiv 📖CompOp
addEquiv' 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
add_self 📖mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
add_eq_zero_iff_eq_neg
neg_eq_self
card_four 📖mathematicalNat.card
card_four' 📖mathematicalFintype.cardcard_four
Nat.card_eq_fintype_card
eq_add_of_ne_all 📖mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instFinite
Finset.eq_of_mem_insert_of_notMem
Finset.mem_univ
eq_finset_univ
Finset.mem_insert
Finset.mem_singleton
eq_finset_univ 📖mathematicalFinset
Finset.instInsert
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Finset.instSingleton
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Finset.univ
Finset.eq_univ_of_card
card_four'
Finset.card_insert_of_notMem
Finset.mem_insert
add_eq_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_eq_right
AddRightCancelSemigroup.toIsRightCancelAdd
Finset.mem_singleton
Set.mem_insert_iff
Set.mem_singleton_iff
add_notMem_of_exponent_two
exponent_two
Finset.card_singleton
exponent_two 📖mathematicalAddMonoid.exponent
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instFinite 📖mathematicalFiniteNat.finite_of_card_ne_zero
card_four
Nat.instAtLeastTwoHAddOfNat
OfNat.ofNat_ne_zero
Nat.instCharZero
neg_eq_self 📖mathematicalNegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
neg_eq_self_of_exponent_two
exponent_two
nonempty_addEquiv 📖mathematicalAddEquiv
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instFinite
card_four'
Equiv.setValue_eq
not_isAddCyclic 📖mathematicalIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
exponent_two
card_four
IsAddCyclic.exponent_eq_card

IsKleinFour

Definitions

NameCategoryTheorems
mulEquiv 📖CompOp
mulEquiv' 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
card_four 📖mathematicalNat.card
card_four' 📖mathematicalFintype.cardcard_four
Nat.card_eq_fintype_card
eq_finset_univ 📖mathematicalFinset
Finset.instInsert
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Finset.instSingleton
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Finset.univ
Finset.eq_univ_of_card
card_four'
Finset.card_insert_of_notMem
LeftCancelSemigroup.toIsLeftCancelMul
RightCancelSemigroup.toIsRightCancelMul
mul_notMem_of_exponent_two
exponent_two
Finset.card_singleton
eq_mul_of_ne_all 📖mathematicalMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instFinite
Finset.eq_of_mem_insert_of_notMem
Finset.mem_univ
eq_finset_univ
exponent_two 📖mathematicalMonoid.exponent
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instFinite 📖mathematicalFiniteNat.finite_of_card_ne_zero
card_four
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
inv_eq_self 📖mathematicalInvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
inv_eq_self_of_exponent_two
exponent_two
mul_self 📖mathematicalMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
mul_eq_one_iff_eq_inv
inv_eq_self
nonempty_mulEquiv 📖mathematicalMulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instFinite
card_four'
Equiv.setValue_eq
not_isCyclic 📖mathematicalIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
exponent_two
card_four
IsCyclic.exponent_eq_card

(root)

Definitions

NameCategoryTheorems
IsAddKleinFour 📖CompData
2 mathmath: instIsAddKleinFourAdditiveOfIsKleinFour, instIsAddKleinFourProdZModOfNatNat
IsKleinFour 📖CompData
3 mathmath: alternatingGroup.kleinFour_isKleinFour, DihedralGroup.instIsKleinFourOfNatNat, instIsKleinFourMultiplicativeOfIsAddKleinFour

Theorems

NameKindAssumesProvesValidatesDepends On
instIsAddKleinFourAdditiveOfIsKleinFour 📖mathematicalIsAddKleinFour
Additive
Additive.addGroup
IsKleinFour.card_four
IsKleinFour.exponent_two
instIsAddKleinFourProdZModOfNatNat 📖mathematicalIsAddKleinFour
ZMod
Prod.instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
Nat.card_eq_fintype_card
Fintype.card_prod
ZMod.card
AddMonoid.exponent_prod
ZMod.exponent
lcm_same
normalize_eq
Unique.instSubsingleton
instIsKleinFourMultiplicativeOfIsAddKleinFour 📖mathematicalIsKleinFour
Multiplicative
Multiplicative.group
IsAddKleinFour.card_four
IsAddKleinFour.exponent_two

---

← Back to Index