Documentation Verification Report

Sylow

πŸ“ Source: Mathlib/GroupTheory/Sylow.lean

Statistics

MetricCount
DefinitionstoSylow, Sylow, comapOfInjective, comapOfKerIsPGroup, directProductOfNormal, equiv, equivQuotientNormalizer, equivSMul, fixedPointsMulLeftCosetsEquivQuotient, inhabited, instCoeOutSubgroup, instPartialOrder, instSetLike, mapSurjective, mulAction, ofCard, pointwiseMulAction, subtype, toSubgroup, unique_of_normal
20
Theoremsexists_le_sylow, inf_normalizer_sylow, mem_toSylow, sylow_mem_fixedPoints_iff, toSylow_coe, card_preimage_mk, sylow_mem_fixedPoints_iff, card_coprime_index, card_dvd_index, card_eq_card_quotient_normalizer, card_eq_index_normalizer, card_eq_multiplicity, card_normalizer_modEq_card, card_quotient_normalizer_modEq_card_quotient, characteristic_of_normal, characteristic_of_subsingleton, coe_comapOfInjective, coe_comapOfKerIsPGroup, coe_mapSurjective, coe_ofCard, coe_smul, coe_subgroup_smul, coe_subtype, conj_eq_normalizer_conj_of_mem, conj_eq_normalizer_conj_of_mem_centralizer, dvd_card_of_dvd_card, exists_comap_eq_of_injective, exists_comap_eq_of_ker_isPGroup, exists_comap_subtype_eq, exists_subgroup_card_pow_prime, exists_subgroup_card_pow_prime_le, exists_subgroup_card_pow_prime_of_le_card, exists_subgroup_card_pow_succ, exists_subgroup_le_card_le, exists_subgroup_le_card_pow_prime_of_le_card, ext, ext_iff, finite_of_injective, finite_of_ker_is_pGroup, instFiniteQuotientSubgroupNormalizerOfFactPrime, instFiniteSubtypeMemSubgroup, instSubgroupClass, isPGroup', isPretransitive_of_finite, is_maximal', mapSurjective_surjective, mem_fixedPoints_mul_left_cosets_iff_mem_normalizer, ne_bot_of_dvd_card, nonempty, normal_of_all_max_subgroups_normal, normal_of_normalizerCondition, normal_of_normalizer_normal, normal_of_subsingleton, normalizer_normalizer, normalizer_sup_eq_top, normalizer_sup_eq_top', not_dvd_index, not_dvd_index', orbit_eq_top, pointwise_smul_def, pow_dvd_card_of_pow_dvd_card, prime_dvd_card_quotient_normalizer, prime_pow_dvd_card_normalizer, smul_def, smul_eq_iff_mem_normalizer, smul_eq_of_normal, smul_le, smul_subtype, stabilizer_eq_normalizer, subtype_injective, card_sylow_modEq_one, not_dvd_card_sylow
72
Total92

IsPGroup

Definitions

NameCategoryTheorems
toSylow πŸ“–CompOp
2 mathmath: toSylow_coe, mem_toSylow

Theorems

NameKindAssumesProvesValidatesDepends On
exists_le_sylow πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Sylow.toSubgroup
β€”zorn_le_nonemptyβ‚€
IsChain.total
instReflLe
Subgroup.mul_mem
Subgroup.one_mem
Subgroup.inv_mem
Subgroup.coe_pow
Maximal.prop
Maximal.eq_of_ge
inf_normalizer_sylow πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.instMin
Subgroup.normalizer
Sylow.toSubgroup
β€”le_antisymm
le_inf
inf_le_left
sup_eq_right
Sylow.is_maximal'
to_sup_of_normal_right'
to_inf_left
Sylow.isPGroup'
inf_le_right
le_sup_right
inf_le_inf_left
Subgroup.le_normalizer
mem_toSylow πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.index
Sylow
Sylow.instSetLike
toSylow
β€”β€”
sylow_mem_fixedPoints_iff πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Sylow
Set
Set.instMembership
MulAction.fixedPoints
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.instMulAction
Sylow.mulAction
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Sylow.toSubgroup
β€”Subgroup.sylow_mem_fixedPoints_iff
inf_eq_left
inf_normalizer_sylow
toSylow_coe πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.index
Sylow.toSubgroup
toSylow
β€”β€”

QuotientGroup

Theorems

NameKindAssumesProvesValidatesDepends On
card_preimage_mk πŸ“–mathematicalβ€”Nat.card
Set.Elem
Set.preimage
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
SetLike.instMembership
Subgroup.instSetLike
β€”Nat.card_prod
Nat.card_congr

Subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
sylow_mem_fixedPoints_iff πŸ“–mathematicalβ€”Sylow
Set
Set.instMembership
MulAction.fixedPoints
Subgroup
SetLike.instMembership
instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toGroup
instMulAction
Sylow.mulAction
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
normalizer
Sylow.toSubgroup
β€”instIsConcreteLE

Sylow

Definitions

NameCategoryTheorems
comapOfInjective πŸ“–CompOp
1 mathmath: coe_comapOfInjective
comapOfKerIsPGroup πŸ“–CompOp
1 mathmath: coe_comapOfKerIsPGroup
directProductOfNormal πŸ“–CompOpβ€”
equiv πŸ“–CompOpβ€”
equivQuotientNormalizer πŸ“–CompOpβ€”
equivSMul πŸ“–CompOpβ€”
fixedPointsMulLeftCosetsEquivQuotient πŸ“–CompOpβ€”
inhabited πŸ“–CompOpβ€”
instCoeOutSubgroup πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOpβ€”
instSetLike πŸ“–CompOp
6 mathmath: coe_smul, normalizer_le_centralizer_or_le_commutator, alternatingGroup.coe_two_sylow_of_card_eq_four, IsPGroup.mem_toSylow, instSubgroupClass, IsCyclic.normalizer_le_centralizer
mapSurjective πŸ“–CompOp
2 mathmath: mapSurjective_surjective, coe_mapSurjective
mulAction πŸ“–CompOp
12 mathmath: IsPGroup.sylow_mem_fixedPoints_iff, coe_smul, smul_eq_iff_mem_normalizer, stabilizer_eq_normalizer, orbit_eq_top, Subgroup.sylow_mem_fixedPoints_iff, smul_eq_of_normal, coe_subgroup_smul, smul_subtype, isPretransitive_of_finite, smul_le, smul_def
ofCard πŸ“–CompOp
1 mathmath: coe_ofCard
pointwiseMulAction πŸ“–CompOp
2 mathmath: pointwise_smul_def, smul_def
subtype πŸ“–CompOp
2 mathmath: coe_subtype, smul_subtype
toSubgroup πŸ“–CompOp
46 mathmath: isPGroup', not_dvd_index', IsCyclic.isComplement', pointwise_smul_def, IsPGroup.sylow_mem_fixedPoints_iff, normalizer_normalizer, alternatingGroup.card_two_sylow_of_card_eq_four, normal_of_normalizerCondition, card_dvd_index, coe_ofCard, smul_eq_iff_mem_normalizer, normal_of_all_max_subgroups_normal, not_dvd_index, ext_iff, stabilizer_eq_normalizer, normal_of_subsingleton, characteristic_of_subsingleton, Subgroup.sylow_mem_fixedPoints_iff, exists_comap_eq_of_injective, conj_eq_normalizer_conj_of_mem, characteristic_of_normal, normalizer_le_centralizer_or_le_commutator, le_center_or_le_commutator, IsPGroup.exists_le_sylow, isNilpotent_of_finite_tfae, alternatingGroup.two_sylow_eq_kleinFour_of_card_eq_four, IsPGroup.toSylow_coe, card_eq_multiplicity, coe_subgroup_smul, normalizer_sup_eq_top, dvd_card_of_dvd_card, exists_comap_subtype_eq, normal_of_normalizer_normal, IsPGroup.inf_normalizer_sylow, coe_mapSurjective, IsZGroup.isZGroup, instFiniteQuotientSubgroupNormalizerOfFactPrime, isZGroup_iff, pow_dvd_card_of_pow_dvd_card, card_eq_card_quotient_normalizer, conj_eq_normalizer_conj_of_mem_centralizer, IsCyclic.normalizer_le_centralizer, exists_comap_eq_of_ker_isPGroup, card_eq_index_normalizer, IsZGroup.instIsCyclicSubtypeMemSubgroupOfFactPrime, card_coprime_index
unique_of_normal πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
card_coprime_index πŸ“–mathematicalβ€”Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
toSubgroup
Subgroup.index
β€”IsPGroup.iff_card
Subgroup.instFiniteSubtypeMem
isPGroup'
Nat.Prime.coprime_pow_of_not_dvd
Fact.out
not_dvd_index
SetLike.instFinite
Subgroup.finiteIndex_of_finite
card_dvd_index πŸ“–mathematicalβ€”Nat.card
Sylow
Subgroup.index
toSubgroup
β€”Dvd.dvd.trans
card_eq_index_normalizer
dvd_rfl
Subgroup.index_dvd_of_le
Subgroup.le_normalizer
card_eq_card_quotient_normalizer πŸ“–mathematicalβ€”Nat.card
Sylow
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
Subgroup.normalizer
toSubgroup
β€”Nat.card_congr
card_eq_index_normalizer πŸ“–mathematicalβ€”Nat.card
Sylow
Subgroup.index
Subgroup.normalizer
toSubgroup
β€”card_eq_card_quotient_normalizer
card_eq_multiplicity πŸ“–mathematicalβ€”Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
toSubgroup
Monoid.toNatPow
Nat.instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Nat.factorization
β€”IsPGroup.iff_card
Subgroup.instFiniteSubtypeMem
isPGroup'
Nat.Prime.pow_dvd_iff_dvd_ordProj
Fact.out
LT.lt.ne'
Nat.card_pos
One.instNonempty
Subgroup.card_subgroup_dvd_card
pow_dvd_card_of_pow_dvd_card
Nat.ordProj_dvd
card_normalizer_modEq_card πŸ“–mathematicalNat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Monoid.toNatPow
Nat.instMonoid
Nat.ModEq
Subgroup.normalizer
β€”Subgroup.le_normalizer
Subgroup.card_eq_card_quotient_mul_card_subgroup
Nat.card_congr
pow_succ'
Nat.ModEq.mul_right'
card_quotient_normalizer_modEq_card_quotient
card_quotient_normalizer_modEq_card_quotient πŸ“–mathematicalNat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Monoid.toNatPow
Nat.instMonoid
Nat.ModEq
HasQuotient.Quotient
Subgroup.normalizer
Subgroup.toGroup
QuotientGroup.instHasQuotientSubgroup
Subgroup.comap
Subgroup.subtype
β€”Nat.card_congr
Subtype.finite
Nat.ModEq.symm
IsPGroup.card_modEq_card_fixedPoints
IsPGroup.of_card
Subgroup.finite_quotient_of_finiteIndex
Subgroup.finiteIndex_of_finite
characteristic_of_normal πŸ“–mathematicalβ€”Subgroup.Characteristic
toSubgroup
β€”characteristic_of_subsingleton
Unique.instSubsingleton
characteristic_of_subsingleton πŸ“–mathematicalβ€”Subgroup.Characteristic
toSubgroup
β€”Subgroup.characteristic_iff_map_eq
Subgroup.pointwise_smul_def
pointwise_smul_def
coe_comapOfInjective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
toSubgroup
MonoidHom.range
comapOfInjective
Subgroup.comap
β€”β€”
coe_comapOfKerIsPGroup πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
toSubgroup
MonoidHom.range
comapOfKerIsPGroup
Subgroup.comap
β€”β€”
coe_mapSurjective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
toSubgroup
mapSurjective
Subgroup.map
β€”β€”
coe_ofCard πŸ“–mathematicalNat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Monoid.toNatPow
Nat.instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Nat.factorization
toSubgroup
ofCard
β€”β€”
coe_smul πŸ“–mathematicalβ€”SetLike.coe
Sylow
instSetLike
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
mulAction
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Set
Set.smulSet
MulAut.instGroup
MulAut.applyMulAction
DFunLike.coe
MonoidHom
MonoidHom.instFunLike
MulAut.conj
β€”β€”
coe_subgroup_smul πŸ“–mathematicalβ€”toSubgroup
Sylow
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
mulAction
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Subgroup
MulAut.instGroup
Subgroup.pointwiseMulAction
MulAut.applyMulDistribMulAction
DFunLike.coe
MonoidHom
MonoidHom.instFunLike
MulAut.conj
β€”β€”
coe_subtype πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
toSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
subtype
Subgroup.subgroupOf
β€”β€”
conj_eq_normalizer_conj_of_mem πŸ“–mathematicalSylow
SetLike.instMembership
instSetLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Subgroup
Subgroup.instSetLike
Subgroup.normalizer
toSubgroup
β€”conj_eq_normalizer_conj_of_mem_centralizer
Subgroup.le_centralizer
conj_eq_normalizer_conj_of_mem_centralizer πŸ“–mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.centralizer
SetLike.coe
Sylow
instSetLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Subgroup.normalizer
toSubgroup
β€”Subgroup.le_centralizer_iff
Subgroup.zpowers_le
mul_assoc
eq_inv_mul_iff_mul_eq
eq_mul_inv_iff_mul_eq
MulAction.exists_smul_eq
isPretransitive_of_finite
instFiniteSubtypeMemSubgroup
smul_eq_iff_mem_normalizer
subtype_injective
smul_le
smul_smul
subtype.congr_simp
smul_subtype
Commute.right_comm
Subtype.prop
Subgroup.mem_zpowers
mul_inv_rev
inv_mul_cancel_right
dvd_card_of_dvd_card πŸ“–mathematicalNat.cardSubgroup
SetLike.instMembership
Subgroup.instSetLike
toSubgroup
β€”pow_dvd_card_of_pow_dvd_card
pow_one
exists_comap_eq_of_injective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
Subgroup.comap
toSubgroup
β€”exists_comap_eq_of_ker_isPGroup
IsPGroup.ker_isPGroup_of_injective
exists_comap_eq_of_ker_isPGroup πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Subgroup.comap
toSubgroup
β€”is_maximal'
IsPGroup.comap_of_ker_isPGroup
isPGroup'
Subgroup.map_le_iff_le_comap
IsPGroup.exists_le_sylow
IsPGroup.map
exists_comap_subtype_eq πŸ“–mathematicalβ€”Subgroup.comap
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.subtype
toSubgroup
β€”exists_comap_eq_of_injective
Subtype.coe_injective
exists_subgroup_card_pow_prime πŸ“–mathematicalMonoid.toNatPow
Nat.instMonoid
Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
β€”exists_subgroup_card_pow_prime_le
Subgroup.card_bot
pow_zero
exists_subgroup_card_pow_prime_le πŸ“–mathematicalMonoid.toNatPow
Nat.instMonoid
Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
β€”β€”
exists_subgroup_card_pow_prime_of_le_card πŸ“–mathematicalNat.Prime
IsPGroup
Monoid.toNatPow
Nat.instMonoid
Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
β€”Nat.finite_of_card_ne_zero
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
Nat.cast_pow
sub_eq_zero_of_eq
Nat.cast_zero
Nat.cast_one
Nat.Prime.pos
IsPGroup.exists_card_eq
exists_subgroup_card_pow_prime
pow_dvd_pow
Nat.Prime.one_lt
exists_subgroup_card_pow_succ πŸ“–mathematicalMonoid.toNatPow
Nat.instMonoid
Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
β€”exists_eq_mul_left_of_dvd
mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
Nat.instIsCancelMulZero
LT.lt.ne'
Nat.card_pos
One.instNonempty
Subgroup.instFiniteSubtypeMem
Subgroup.card_eq_card_quotient_mul_card_subgroup
pow_succ'
mul_assoc
mul_comm
IsPGroup.card_modEq_card_fixedPoints
IsPGroup.of_card
Subgroup.finite_quotient_of_finiteIndex
Subgroup.finiteIndex_of_finite
Nat.card_congr
Subtype.finite
dvd_mul_left
Subgroup.normal_in_normalizer
exists_prime_orderOf_dvd_card'
Subgroup.instFiniteIndex_subgroupOf
Subgroup.le_normalizer
Nat.card_image_of_injective
Subtype.val_injective
pow_succ
Nat.card_zpowers
Nat.card_prod
zpow_zero
QuotientGroup.eq_one_iff
exists_subgroup_le_card_le πŸ“–mathematicalNat.Prime
IsPGroup
Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
β€”exists_nat_pow_near
Nat.instIsStrictOrderedRing
instArchimedeanNat
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt
exists_subgroup_le_card_pow_prime_of_le_card
LE.le.trans
pow_succ'
exists_subgroup_le_card_pow_prime_of_le_card πŸ“–mathematicalNat.Prime
IsPGroup
Monoid.toNatPow
Nat.instMonoid
Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
β€”exists_subgroup_card_pow_prime_of_le_card
IsPGroup.to_subgroup
Subgroup.map_subtype_le
Subgroup.subtype_injective
Nat.card_congr
ext πŸ“–β€”toSubgroupβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”toSubgroupβ€”ext
finite_of_injective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
Finite
Sylow
β€”finite_of_ker_is_pGroup
IsPGroup.ker_isPGroup_of_injective
finite_of_ker_is_pGroup πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Finite
Sylow
β€”exists_comap_eq_of_ker_isPGroup
Finite.of_injective
ext
instFiniteQuotientSubgroupNormalizerOfFactPrime πŸ“–mathematicalβ€”Finite
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
Subgroup.normalizer
toSubgroup
β€”Finite.of_equiv
instFiniteSubtypeMemSubgroup πŸ“–mathematicalβ€”Finite
Sylow
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
β€”finite_of_injective
Subgroup.subtype_injective
instSubgroupClass πŸ“–mathematicalβ€”SubgroupClass
Sylow
Group.toDivInvMonoid
instSetLike
β€”Subgroup.mul_mem
Subgroup.one_mem
Subgroup.inv_mem
isPGroup' πŸ“–mathematicalβ€”IsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
toSubgroup
Subgroup.toGroup
β€”β€”
isPretransitive_of_finite πŸ“–mathematicalβ€”MulAction.IsPretransitive
Sylow
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
mulAction
β€”IsPGroup.sylow_mem_fixedPoints_iff
isPGroup'
is_maximal'
ge_of_eq
IsPGroup.nonempty_fixed_point_of_prime_not_dvd_card
Nat.Prime.not_dvd_one
Fact.out
Nat.modEq_zero_iff_dvd
MulAction.mem_orbit_self
Nat.card_unique
Unique.instSubsingleton
Set.eq_singleton_iff_unique_mem
ext
Nat.ModEq.symm
IsPGroup.card_modEq_card_fixedPoints
Subtype.finite
is_maximal' πŸ“–β€”IsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
toSubgroup
β€”β€”β€”
mapSurjective_surjective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
Sylow
mapSurjective
β€”Finite.of_surjective
nonempty
Subgroup.map_le_iff_le_comap
Subgroup.map_subtype_le
IsPGroup.map
isPGroup'
Subgroup.index_map_subtype
Subgroup.index_comap_of_surjective
Nat.Prime.not_dvd_mul
Fact.out
not_dvd_index
instFiniteSubtypeMemSubgroup
SetLike.instFinite
Subgroup.finiteIndex_of_finite
Subgroup.instFiniteSubtypeMem
ext_iff
coe_mapSurjective
is_maximal'
Dvd.dvd.trans
Subgroup.index_map_dvd
mem_fixedPoints_mul_left_cosets_iff_mem_normalizer πŸ“–mathematicalβ€”HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
Set
Set.instMembership
MulAction.fixedPoints
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.mulLeftCosetsCompSubtypeVal
Subgroup.normalizer
β€”MulAction.mem_fixedPoints'
inv_mem_iff
SubgroupClass.toInvMemClass
Subgroup.instSubgroupClass
Subgroup.mem_normalizer_fintype
QuotientGroup.eq
InvMemClass.inv_mem
inv_inv
mul_inv_rev
Quotient.inductionOn'
mul_mem_cancel_left
mul_inv_cancel_left
mul_assoc
ne_bot_of_dvd_card πŸ“–β€”Nat.cardβ€”β€”Nat.Prime.not_dvd_one
Fact.out
dvd_card_of_dvd_card
Subgroup.card_bot
nonempty πŸ“–mathematicalβ€”Sylowβ€”IsPGroup.exists_le_sylow
IsPGroup.of_bot
normal_of_all_max_subgroups_normal πŸ“–mathematicalSubgroup.NormaltoSubgroupβ€”Subgroup.normalizer_eq_top_iff
IsCoatomic.eq_top_or_exists_le_coatom
IsStronglyCoatomic.toIsCoatomic
instIsStronglyCoatomicOfWellFoundedGT
Finite.to_wellFoundedGT
SetLike.instFinite
le_trans
Subgroup.le_normalizer
sup_of_le_right
normalizer_sup_eq_top'
instFiniteSubtypeMemSubgroup
normal_of_normalizerCondition πŸ“–mathematicalNormalizerConditionSubgroup.Normal
toSubgroup
β€”Subgroup.normalizer_eq_top_iff
normalizerCondition_iff_only_full_group_self_normalizing
normalizer_normalizer
normal_of_normalizer_normal πŸ“–mathematicalβ€”Subgroup.Normal
toSubgroup
β€”Subgroup.normalizer_eq_top_iff
normalizer_sup_eq_top'
instFiniteSubtypeMemSubgroup
Subgroup.le_normalizer
sup_idem
normal_of_subsingleton πŸ“–mathematicalβ€”Subgroup.Normal
toSubgroup
β€”Subgroup.normal_of_characteristic
characteristic_of_subsingleton
normalizer_normalizer πŸ“–mathematicalβ€”Subgroup.normalizer
toSubgroup
β€”LE.le.trans
Subgroup.le_normalizer
normal_of_normalizer_normal
instFiniteSubtypeMemSubgroup
le_antisymm
Subgroup.subgroupOf_normalizer_eq
Subgroup.normal_subgroupOf_iff_le_normalizer
coe_subtype
Subgroup.normal_in_normalizer
normalizer_sup_eq_top πŸ“–mathematicalβ€”Subgroup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Subgroup.instCompleteLattice
Subgroup.normalizer
Subgroup.map
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.subtype
toSubgroup
Top.top
Subgroup.instTop
β€”top_le_iff
MulAction.exists_smul_eq
isPretransitive_of_finite
inv_mul_cancel_left
sup_comm
Subgroup.mul_mem_sup
Subgroup.inv_mem
MulEquiv.injective
Subgroup.mem_map_iff_mem
Subgroup.map_map
Subgroup.pointwise_smul_def
pointwise_smul_def
ext_iff
MonoidHom.map_mul
MulAut.conjNormal_val
SemigroupAction.mul_smul
smul_def
normalizer_sup_eq_top' πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
toSubgroup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Subgroup.instCompleteLattice
Subgroup.normalizer
Top.top
Subgroup.instTop
β€”normalizer_sup_eq_top
coe_subtype
Subgroup.subgroupOf_map_subtype
inf_of_le_left
not_dvd_index πŸ“–mathematicalβ€”Subgroup.index
toSubgroup
β€”not_dvd_index'
LT.lt.ne'
Nat.card_pos
Subgroup.finite_quotient_of_finiteIndex
Subgroup.instFiniteIndex_subgroupOf
not_dvd_index' πŸ“–mathematicalβ€”Subgroup.index
toSubgroup
β€”Subgroup.relIndex_mul_index
Subgroup.le_normalizer
card_eq_index_normalizer
Subgroup.normal_in_normalizer
Nat.Prime.not_dvd_mul
Fact.out
not_dvd_card_sylow
orbit_eq_top πŸ“–mathematicalβ€”MulAction.orbit
Sylow
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
mulAction
Top.top
Set
BooleanAlgebra.toTop
Set.instBooleanAlgebra
β€”top_le_iff
MulAction.exists_smul_eq
isPretransitive_of_finite
pointwise_smul_def πŸ“–mathematicalβ€”toSubgroup
Sylow
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
pointwiseMulAction
Subgroup
Subgroup.pointwiseMulAction
β€”β€”
pow_dvd_card_of_pow_dvd_card πŸ“–mathematicalMonoid.toNatPow
Nat.instMonoid
Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
toSubgroup
β€”Nat.Prime.coprime_pow_of_not_dvd
Fact.out
not_dvd_index
SetLike.instFinite
Subgroup.finiteIndex_of_finite
Subgroup.index_mul_card
prime_dvd_card_quotient_normalizer πŸ“–mathematicalMonoid.toNatPow
Nat.instMonoid
Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
HasQuotient.Quotient
Subgroup.normalizer
Subgroup.toGroup
QuotientGroup.instHasQuotientSubgroup
Subgroup.comap
Subgroup.subtype
β€”exists_eq_mul_left_of_dvd
mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
Nat.instIsCancelMulZero
LT.lt.ne'
Nat.card_pos
One.instNonempty
Subgroup.instFiniteSubtypeMem
Subgroup.card_eq_card_quotient_mul_card_subgroup
pow_succ'
mul_assoc
mul_comm
Nat.ModEq.symm
card_quotient_normalizer_modEq_card_quotient
dvd_mul_left
prime_pow_dvd_card_normalizer πŸ“–mathematicalMonoid.toNatPow
Nat.instMonoid
Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.normalizerβ€”Nat.modEq_zero_iff_dvd
Nat.ModEq.trans
card_normalizer_modEq_card
Dvd.dvd.modEq_zero_nat
smul_def πŸ“–mathematicalβ€”Sylow
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
mulAction
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulAut.instGroup
pointwiseMulAction
MulAut.applyMulDistribMulAction
DFunLike.coe
MonoidHom
MonoidHom.instFunLike
MulAut.conj
β€”β€”
smul_eq_iff_mem_normalizer πŸ“–mathematicalβ€”Sylow
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
mulAction
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.normalizer
toSubgroup
β€”SetLike.ext_iff
inv_mem_iff
SubgroupClass.toInvMemClass
Subgroup.instSubgroupClass
Subgroup.mem_normalizer_iff
inv_inv
mul_assoc
inv_mul_cancel_left
inv_mul_cancel
mul_one
MulAut.apply_inv_self
smul_eq_of_normal πŸ“–mathematicalβ€”Sylow
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
mulAction
β€”Subgroup.normalizer_eq_top
smul_le πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
toSubgroup
SetLike.instMembership
Subgroup.instSetLike
Sylow
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
Subgroup.instMulAction
mulAction
β€”Subgroup.conj_smul_le_of_le
smul_subtype πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
toSubgroup
SetLike.instMembership
Subgroup.instSetLike
Sylow
Subgroup.toGroup
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
mulAction
subtype
Subgroup.instMulAction
smul_le
β€”ext
smul_le
Subgroup.conj_smul_subgroupOf
stabilizer_eq_normalizer πŸ“–mathematicalβ€”MulAction.stabilizer
Sylow
mulAction
Subgroup.normalizer
toSubgroup
β€”Subgroup.ext
subtype_injective πŸ“–β€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
toSubgroup
subtype
β€”β€”SetLike.ext_iff

(root)

Definitions

NameCategoryTheorems
Sylow πŸ“–CompData
30 mathmath: Sylow.pointwise_smul_def, IsPGroup.sylow_mem_fixedPoints_iff, Sylow.coe_smul, Sylow.card_dvd_index, Sylow.smul_eq_iff_mem_normalizer, alternatingGroup.subsingleton_two_sylow, Sylow.stabilizer_eq_normalizer, Sylow.mapSurjective_surjective, Sylow.orbit_eq_top, Subgroup.sylow_mem_fixedPoints_iff, Sylow.nonempty, Sylow.smul_eq_of_normal, Sylow.finite_of_ker_is_pGroup, Sylow.normalizer_le_centralizer_or_le_commutator, isNilpotent_of_finite_tfae, alternatingGroup.coe_two_sylow_of_card_eq_four, IsPGroup.mem_toSylow, card_sylow_modEq_one, Sylow.instSubgroupClass, Sylow.coe_subgroup_smul, Sylow.smul_subtype, Sylow.isPretransitive_of_finite, not_dvd_card_sylow, Sylow.card_eq_card_quotient_normalizer, Sylow.smul_le, Sylow.smul_def, IsCyclic.normalizer_le_centralizer, Sylow.card_eq_index_normalizer, Sylow.finite_of_injective, Sylow.instFiniteSubtypeMemSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
card_sylow_modEq_one πŸ“–mathematicalβ€”Nat.ModEq
Nat.card
Sylow
β€”Sylow.nonempty
Set.ext
IsPGroup.sylow_mem_fixedPoints_iff
Sylow.isPGroup'
Sylow.is_maximal'
ge_of_eq
Sylow.ext_iff
Set.mem_singleton_iff
Nat.card_eq_fintype_card
Fintype.card_unique
Nat.ModEq.trans
IsPGroup.card_modEq_card_fixedPoints
Nat.ModEq.refl
not_dvd_card_sylow πŸ“–mathematicalβ€”Nat.card
Sylow
β€”Nat.Prime.ne_one
Fact.out
Nat.modEq_iff_dvd'
zero_le_one
Nat.instZeroLEOneClass
Nat.ModEq.trans
Nat.ModEq.symm
Nat.modEq_zero_iff_dvd
card_sylow_modEq_one

---

← Back to Index