Documentation Verification Report

Transfer

πŸ“ Source: Mathlib/GroupTheory/Transfer.lean

Statistics

MetricCount
Definitionstransfer, diff, transfer, transferCenterPow, transferSylow, diff, transferFunction, transferSet, transferTransversal
9
Theoremstransfer_def, diff_add_diff, diff_neg, diff_self, vadd_diff_vadd, isComplement', normalizer_le_centralizer, ker_transferSylow_disjoint, ker_transferSylow_isComplement', not_dvd_card_ker_transferSylow, transferCenterPow_apply, transferSylow_eq_pow, transferSylow_eq_pow_aux, transferSylow_restrict_eq_pow, transfer_center_eq_pow, transfer_def, transfer_eq_pow, transfer_eq_pow_aux, transfer_eq_prod_quotient_orbitRel_zpowers_quot, coe_transferFunction, diff_inv, diff_mul_diff, diff_self, smul_diff_smul, mem_transferSet, transferFunction_apply, transferTransversal_apply, transferTransversal_apply', transferTransversal_apply''
29
Total38

AddMonoidHom

Definitions

NameCategoryTheorems
transfer πŸ“–CompOp
1 mathmath: transfer_def

Theorems

NameKindAssumesProvesValidatesDepends On
transfer_def πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
instFunLike
transfer
AddSubgroup.leftTransversals.diff
HVAdd.hVAdd
AddSubgroup.LeftTransversal
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddSubgroup.instAddActionLeftTransversal
AddMonoid.toAddAction
AddAction.left_quotientAction
β€”AddAction.left_quotientAction
transfer.eq_1
AddSubgroup.leftTransversals.diff_add_diff
AddSubgroup.leftTransversals.vadd_diff_vadd
add_comm

AddSubgroup.leftTransversals

Definitions

NameCategoryTheorems
diff πŸ“–CompOp
5 mathmath: diff_add_diff, vadd_diff_vadd, diff_neg, AddMonoidHom.transfer_def, diff_self

Theorems

NameKindAssumesProvesValidatesDepends On
diff_add_diff πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
diff
β€”Finset.sum_add_distrib
Finset.sum_congr
AddMonoidHom.map_add
add_assoc
add_neg_cancel_left
diff_neg πŸ“–mathematicalβ€”NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
diff
β€”neg_eq_of_add_eq_zero_right
diff_add_diff
diff_self
diff_self πŸ“–mathematicalβ€”diff
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”add_eq_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
diff_add_diff
vadd_diff_vadd πŸ“–mathematicalβ€”diff
HVAdd.hVAdd
AddSubgroup.LeftTransversal
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddSubgroup.instAddActionLeftTransversal
AddMonoid.toAddAction
AddAction.left_quotientAction
β€”Fintype.sum_equiv
AddAction.left_quotientAction
AddSubgroup.vadd_apply_eq_vadd_apply_neg_vadd
neg_add_rev
add_assoc
neg_add_cancel_left

IsCyclic

Theorems

NameKindAssumesProvesValidatesDepends On
isComplement' πŸ“–mathematicalNat.minFac
Nat.card
Subgroup.IsComplement'
MonoidHom.ker
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Sylow.toSubgroup
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MonoidHom.transferSylow
normalizer_le_centralizer
Subgroup.finiteIndex_of_finite
β€”normalizer_le_centralizer
Subgroup.finiteIndex_of_finite
Nat.card_eq_one_iff_unique
Unique.instSubsingleton
Subgroup.isComplement'_bot_top
Nat.minFac_prime
MonoidHom.ker_transferSylow_isComplement'
SetLike.instFinite
normalizer_le_centralizer πŸ“–mathematicalNat.minFac
Nat.card
Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.normalizer
Sylow.toSubgroup
Subgroup.centralizer
SetLike.coe
Sylow
Sylow.instSetLike
β€”Nat.card_eq_one_iff_unique
Unique.instSubsingleton
le_refl
Nat.minFac_prime
Subgroup.card_dvd_of_injective
MonoidHom.normal_ker
QuotientGroup.kerLift_injective
Subgroup.relIndex_eq_one
Nat.eq_one_of_dvd_coprimes
IsPGroup.exists_card_eq
Subgroup.instFiniteSubtypeMem
Sylow.isPGroup'
eq_zero_or_pos
Nat.instCanonicallyOrderedAdd
card_mulAut
pow_zero
Nat.totient_one
Nat.totient_prime_pow
Fact.out
Subgroup.relIndex_dvd_of_le_left
Subgroup.le_centralizer
instIsMulCommutativeSubtypeMemSubgroupOfIsCyclic
Subgroup.relIndex_dvd_index_of_le
Subgroup.le_normalizer
Nat.Prime.coprime_iff_not_dvd
Sylow.not_dvd_index
SetLike.instFinite
Subgroup.finiteIndex_of_finite
Subgroup.relIndex_dvd_card
Subgroup.card_subgroup_dvd_card
tsub_pos_iff_lt
Nat.instOrderedSub
Nat.Prime.one_lt
Mathlib.Tactic.Contrapose.contrapose₁
Nat.minFac_pos
Nat.minFac_le_of_dvd
Nat.two_le_iff
ne_zero_of_dvd_ne_zero
LT.lt.ne'
Nat.card_pos
One.instNonempty
dvd_rfl
Subgroup.relIndex.eq_1
Subgroup.index.eq_1
Subgroup.normalizerMonoidHom_ker

MonoidHom

Definitions

NameCategoryTheorems
transfer πŸ“–CompOp
4 mathmath: transfer_def, transfer_center_eq_pow, transfer_eq_pow, transfer_eq_prod_quotient_orbitRel_zpowers_quot
transferCenterPow πŸ“–CompOp
1 mathmath: transferCenterPow_apply
transferSylow πŸ“–CompOp
6 mathmath: ker_transferSylow_disjoint, IsCyclic.isComplement', transferSylow_eq_pow, ker_transferSylow_isComplement', not_dvd_card_ker_transferSylow, transferSylow_restrict_eq_pow

Theorems

NameKindAssumesProvesValidatesDepends On
ker_transferSylow_disjoint πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.normalizer
Sylow.toSubgroup
Subgroup.centralizer
SetLike.coe
Sylow
Sylow.instSetLike
IsPGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Disjoint
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
transferSylow
β€”disjoint_iff
Subgroup.card_eq_one
IsPGroup.card_eq_or_dvd
IsPGroup.to_le
inf_le_right
not_dvd_card_ker_transferSylow
Dvd.dvd.trans
Subgroup.card_dvd_of_le
inf_le_left
ker_transferSylow_isComplement' πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.normalizer
Sylow.toSubgroup
Subgroup.centralizer
SetLike.coe
Sylow
Sylow.instSetLike
Subgroup.IsComplement'
ker
SetLike.instMembership
Subgroup.instSetLike
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
transferSylow
β€”SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
Sylow.instSubgroupClass
Equiv.bijective
Sylow.isPGroup'
Sylow.not_dvd_index
transferSylow_restrict_eq_pow
range_eq_top
top_le_iff
LE.le.trans
Eq.ge
restrict_range
Function.Bijective.eq_1
Subgroup.map_le_range
Subgroup.isComplement'_of_disjoint_and_mul_eq_univ
disjoint_iff
Subgroup.coe_top
Subgroup.map_bot
Subgroup.subgroupOf_map_subtype
ker_restrict
Subgroup.map_injective
Subgroup.subtype_injective
ker_eq_bot_iff
Subgroup.normal_mul
normal_ker
SetLike.ext'_iff
sup_comm
Subgroup.comap_map_eq
Subgroup.comap_top
Subgroup.comap_injective
not_dvd_card_ker_transferSylow πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.normalizer
Sylow.toSubgroup
Subgroup.centralizer
SetLike.coe
Sylow
Sylow.instSetLike
Nat.card
SetLike.instMembership
Subgroup.instSetLike
ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
transferSylow
β€”Sylow.not_dvd_index
Subgroup.IsComplement'.index_eq_card
ker_transferSylow_isComplement'
transferCenterPow_apply πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.center
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
instFunLike
transferCenterPow
Monoid.toNatPow
Subgroup.index
β€”β€”
transferSylow_eq_pow πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.normalizer
Sylow.toSubgroup
Subgroup.centralizer
SetLike.coe
Sylow
Sylow.instSetLike
SetLike.instMembership
DFunLike.coe
MonoidHom
Subgroup.instSetLike
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
instFunLike
transferSylow
Monoid.toNatPow
Subgroup.index
transfer_eq_pow_aux
transferSylow_eq_pow_aux
β€”transfer_eq_pow
transferSylow_eq_pow_aux
transferSylow_eq_pow_aux πŸ“–β€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.normalizer
Sylow.toSubgroup
Subgroup.centralizer
SetLike.coe
Sylow
Sylow.instSetLike
SetLike.instMembership
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Monoid.toNatPow
β€”β€”Subgroup.pow_mem
Sylow.conj_eq_normalizer_conj_of_mem
Subgroup.le_normalizer
Commute.inv_mul_cancel
transferSylow_restrict_eq_pow πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.normalizer
Sylow.toSubgroup
Subgroup.centralizer
SetLike.coe
Sylow
Sylow.instSetLike
DFunLike.coe
MonoidHom
SetLike.instMembership
Subgroup.instSetLike
MulOneClass.toMulOne
SubmonoidClass.toMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
Subgroup.toGroup
instFunLike
restrict
transferSylow
SubmonoidClass.nPow
Sylow.instSubgroupClass
Subgroup.index
β€”SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
Sylow.instSubgroupClass
transferSylow_eq_pow
transfer_center_eq_pow πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.center
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
CommGroup.ofIsMulCommutative
Subgroup.toGroup
Subgroup.center.isMulCommutative
instFunLike
transfer
id
Monoid.toNatPow
Subgroup.index
Subgroup.pow_index_mem
Subgroup.instNormalCenter
β€”transfer_eq_pow
Subgroup.center.isMulCommutative
LeftCancelSemigroup.toIsLeftCancelMul
IsMulCentral.comm
mul_inv_cancel_right
transfer_def πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instFunLike
transfer
Subgroup.leftTransversals.diff
Subgroup.LeftTransversal
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Subgroup.instMulActionLeftTransversal
Monoid.toMulAction
MulAction.left_quotientAction
β€”MulAction.left_quotientAction
transfer.eq_1
Subgroup.leftTransversals.diff_mul_diff
Subgroup.leftTransversals.smul_diff_smul
mul_comm
transfer_eq_pow πŸ“–mathematicalMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Monoid.toNatPow
DFunLike.coe
MonoidHom
CommGroup.toGroup
instFunLike
transfer
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.index
transfer_eq_pow_aux
β€”transfer_eq_pow_aux
MulAction.left_quotientAction
QuotientGroup.out_conj_pow_minimalPeriod_mem
transfer_eq_prod_quotient_orbitRel_zpowers_quot
Finset.prod_map_toList
List.prod_map_hom
instMonoidHomClass
Subtype.coe_injective
Subgroup.mem_zpowers
Subgroup.coe_pow
Subgroup.index_eq_card
Nat.card_eq_fintype_card
Fintype.card_congr
Fintype.card_sigma
Subgroup.zpowers_isMulCommutative
Finset.prod_pow_eq_pow_sum
Subgroup.val_list_prod
transfer_eq_pow_aux πŸ“–mathematicalMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Monoid.toNatPow
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.index
β€”pow_zero
Subgroup.one_mem
MulAction.left_quotientAction
QuotientGroup.out_conj_pow_minimalPeriod_mem
Subgroup.mem_zpowers
Subgroup.zpowers_isMulCommutative
Subgroup.prod_mem
Nat.card_eq_fintype_card
Fintype.card_congr
Fintype.card_sigma
Finset.prod_congr
MulAction.minimalPeriod_eq_card
Finset.prod_pow_eq_pow_sum
transfer_eq_prod_quotient_orbitRel_zpowers_quot πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instFunLike
transfer
Finset.prod
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
MulAction.orbitRel
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
Subgroup.toGroup
MulAction.mulLeftCosetsCompSubtypeVal
CommGroup.toCommMonoid
Finset.univ
MulOne.toMul
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Quotient.out
QuotientGroup.leftRel
Monoid.toNatPow
Function.minimalPeriod
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulAction.quotient
Monoid.toMulAction
MulAction.left_quotientAction
QuotientGroup.out_conj_pow_minimalPeriod_mem
β€”MulAction.left_quotientAction
MulAction.minimalPeriod_pos
Subtype.finite
Subgroup.finite_quotient_of_finiteIndex
QuotientGroup.out_conj_pow_minimalPeriod_mem
transfer_def
Equiv.prod_comp
Finset.prod_sigma
Fintype.prod_congr
Subgroup.transferTransversal_apply'
Subgroup.transferTransversal_apply''
Finset.prod_congr
Fintype.prod_eq_single
inv_mul_cancel
map_one
MonoidHomClass.toOneHomClass
instMonoidHomClass
ZMod.cast_zero
zpow_zero
one_mul
mul_assoc

Subgroup

Definitions

NameCategoryTheorems
transferFunction πŸ“–CompOp
4 mathmath: transferTransversal_apply, mem_transferSet, coe_transferFunction, transferFunction_apply
transferSet πŸ“–CompOp
1 mathmath: mem_transferSet
transferTransversal πŸ“–CompOp
3 mathmath: transferTransversal_apply, transferTransversal_apply', transferTransversal_apply''

Theorems

NameKindAssumesProvesValidatesDepends On
coe_transferFunction πŸ“–mathematicalβ€”transferFunctionβ€”MulAction.left_quotientAction
transferFunction_apply
smul_eq_mul
MulAction.Quotient.coe_smul_out
quotientEquivSigmaZMod_symm_apply
Sigma.eta
Equiv.symm_apply_apply
mem_transferSet πŸ“–mathematicalβ€”Set
Set.instMembership
transferSet
transferFunction
β€”β€”
transferFunction_apply πŸ“–mathematicalβ€”transferFunction
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivInvMonoid.toZPow
ZMod.cast
Ring.toAddGroupWithOne
Int.instRing
Function.minimalPeriod
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulAction.quotient
Monoid.toMulAction
MulAction.left_quotientAction
Quotient.out
MulAction.orbitRel
SetLike.instMembership
instSetLike
zpowers
toGroup
MulAction.mulLeftCosetsCompSubtypeVal
MulAction.orbitRel.Quotient
ZMod
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
quotientEquivSigmaZMod
QuotientGroup.leftRel
β€”β€”
transferTransversal_apply πŸ“–mathematicalβ€”Set
Set.instMembership
IsComplement
SetLike.coe
Subgroup
instSetLike
transferTransversal
DFunLike.coe
Equiv
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
IsComplement.leftQuotientEquiv
transferFunction
β€”IsComplement.leftQuotientEquiv_apply
coe_transferFunction
transferTransversal_apply' πŸ“–mathematicalβ€”Set
Set.instMembership
IsComplement
SetLike.coe
Subgroup
instSetLike
transferTransversal
DFunLike.coe
Equiv
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
IsComplement.leftQuotientEquiv
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
MulAction.quotient
Monoid.toMulAction
MulAction.left_quotientAction
DivInvMonoid.toZPow
ZMod.cast
Ring.toAddGroupWithOne
Int.instRing
Function.minimalPeriod
Quotient.out
MulAction.orbitRel
SetLike.instMembership
zpowers
toGroup
MulAction.mulLeftCosetsCompSubtypeVal
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
QuotientGroup.leftRel
β€”MulAction.left_quotientAction
transferTransversal_apply
transferFunction_apply
quotientEquivSigmaZMod_symm_apply
Equiv.apply_symm_apply
transferTransversal_apply'' πŸ“–mathematicalβ€”Set
Set.instMembership
IsComplement
SetLike.coe
Subgroup
instSetLike
LeftTransversal
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionLeftTransversal
Monoid.toMulAction
MulAction.left_quotientAction
transferTransversal
DFunLike.coe
Equiv
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
IsComplement.leftQuotientEquiv
MulAction.quotient
DivInvMonoid.toZPow
ZMod.cast
Ring.toAddGroupWithOne
Int.instRing
Function.minimalPeriod
Quotient.out
MulAction.orbitRel
SetLike.instMembership
zpowers
toGroup
MulAction.mulLeftCosetsCompSubtypeVal
ZMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
ZMod.decidableEq
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPow
QuotientGroup.leftRel
β€”MulAction.left_quotientAction
smul_apply_eq_smul_apply_inv_smul
transferTransversal_apply
transferFunction_apply
SemigroupAction.mul_smul
zpow_neg_one
zpow_add
quotientEquivSigmaZMod_apply
smul_eq_mul
mul_assoc
zpow_one_add
Int.cast_add
Int.cast_neg
Int.cast_one
ZMod.intCast_cast
ZMod.cast_id'
sub_eq_neg_add
ZMod.cast_sub_one
add_sub_cancel
zpow_natCast

Subgroup.leftTransversals

Definitions

NameCategoryTheorems
diff πŸ“–CompOp
7 mathmath: diff_self, Subgroup.smul_diff_smul', MonoidHom.transfer_def, diff_mul_diff, smul_diff_smul, diff_inv, Subgroup.smul_diff'

Theorems

NameKindAssumesProvesValidatesDepends On
diff_inv πŸ“–mathematicalβ€”InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
diff
β€”inv_eq_of_mul_eq_one_right
diff_mul_diff
diff_self
diff_mul_diff πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
diff
β€”Finset.prod_mul_distrib
Finset.prod_congr
MonoidHom.map_mul
mul_assoc
mul_inv_cancel_left
diff_self πŸ“–mathematicalβ€”diff
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
β€”mul_eq_left
LeftCancelSemigroup.toIsLeftCancelMul
diff_mul_diff
smul_diff_smul πŸ“–mathematicalβ€”diff
Subgroup.LeftTransversal
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Subgroup.instMulActionLeftTransversal
Monoid.toMulAction
MulAction.left_quotientAction
β€”Fintype.prod_equiv
MulAction.left_quotientAction
Subgroup.smul_apply_eq_smul_apply_inv_smul
mul_inv_rev
mul_assoc
inv_mul_cancel_left

---

← Back to Index