Documentation Verification Report

Basic

πŸ“ Source: Mathlib/InformationTheory/KullbackLeibler/Basic.lean

Statistics

MetricCount
DefinitionsklDiv
1
Theoremsintegral_llr_add_mul_log_nonneg, integral_llr_add_sub_measure_univ_nonneg, klDiv_def, klDiv_eq_integral_klFun, klDiv_eq_lintegral_klFun, klDiv_eq_top_iff, klDiv_eq_zero_iff, klDiv_ne_top_iff, klDiv_of_ac_of_integrable, klDiv_of_not_ac, klDiv_of_not_integrable, klDiv_self, klDiv_zero_left, klDiv_zero_right, mul_klFun_le_toReal_klDiv, mul_log_le_klDiv, mul_log_le_toReal_klDiv, toReal_klDiv, toReal_klDiv_eq_integral_klFun, toReal_klDiv_of_measure_eq
20
Total21

InformationTheory

Definitions

NameCategoryTheorems
klDiv πŸ“–CompOp
17 mathmath: mul_log_le_klDiv, toReal_klDiv_eq_integral_klFun, klDiv_eq_top_iff, klDiv_self, toReal_klDiv, klDiv_zero_right, klDiv_zero_left, klDiv_of_ac_of_integrable, klDiv_def, klDiv_eq_lintegral_klFun, klDiv_eq_zero_iff, mul_log_le_toReal_klDiv, klDiv_eq_integral_klFun, klDiv_of_not_integrable, toReal_klDiv_of_measure_eq, klDiv_of_not_ac, mul_klFun_le_toReal_klDiv

Theorems

NameKindAssumesProvesValidatesDepends On
integral_llr_add_mul_log_nonneg πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.llr
Real.instLE
Real.instZero
Real.instSub
Real.instAdd
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instMul
MeasureTheory.Measure.real
Set.univ
Real.log
Real.instOne
β€”MeasureTheory.integral_zero_measure
MulZeroClass.zero_mul
add_zero
zero_add
sub_zero
Real.instZeroLEOneClass
MeasureTheory.Measure.absolutelyContinuous_zero_iff
IsScalarTower.right
MeasureTheory.Measure.AbsolutelyContinuous.trans
MeasureTheory.Measure.absolutelyContinuous_smul
integral_llr_add_sub_measure_univ_nonneg
MeasureTheory.IsFiniteMeasure.average
MeasureTheory.integrable_congr
MeasureTheory.llr_smul_right
MeasureTheory.Measure.haveLebesgueDecomposition_of_sigmaFinite
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.IsFiniteMeasure.toSigmaFinite
MeasureTheory.Integrable.sub
MeasureTheory.integrable_const
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
ENNReal.toReal_inv
Real.log_inv
mul_neg
sub_neg_eq_add
MeasureTheory.probReal_univ
MeasureTheory.isProbabilityMeasureSMul
smul_eq_mul
MeasureTheory.integral_const
Real.instCompleteSpace
MeasureTheory.integral_sub
MeasureTheory.integral_congr_ae
integral_llr_add_sub_measure_univ_nonneg πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.llr
Real.instLE
Real.instZero
Real.instSub
Real.instAdd
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.Measure.real
Set.univ
β€”integral_klFun_rnDeriv
MeasureTheory.integral_nonneg
Real.instIsOrderedAddMonoid
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
klFun_nonneg
ENNReal.toReal_nonneg
klDiv_def πŸ“–mathematicalβ€”klDiv
ENNReal
MeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.llr
ENNReal.ofReal
Real.instSub
Real.instAdd
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.Measure.real
Set.univ
Top.top
instTopENNReal
β€”β€”
klDiv_eq_integral_klFun πŸ“–mathematicalβ€”klDiv
ENNReal
MeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.llr
ENNReal.ofReal
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
klFun
ENNReal.toReal
MeasureTheory.Measure.rnDeriv
Top.top
instTopENNReal
β€”klDiv_def
if_ctx_congr
integral_klFun_rnDeriv
klDiv_eq_lintegral_klFun πŸ“–mathematicalβ€”klDiv
ENNReal
MeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.lintegral
ENNReal.ofReal
klFun
ENNReal.toReal
MeasureTheory.Measure.rnDeriv
Top.top
instTopENNReal
β€”klDiv_eq_integral_klFun
MeasureTheory.lintegral_ofReal_ne_top_iff_integrable
Measurable.aestronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
Measurable.fun_comp
measurable_klFun
Measurable.ennreal_toReal
MeasureTheory.Measure.measurable_rnDeriv
MeasureTheory.ae_of_all
MeasureTheory.Measure.instOuterMeasureClass
klFun_nonneg
ENNReal.toReal_nonneg
MeasureTheory.ofReal_integral_eq_lintegral_ofReal
integrable_klFun_rnDeriv_iff
not_iff_not
klDiv_eq_top_iff πŸ“–mathematicalβ€”klDiv
Top.top
ENNReal
instTopENNReal
MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.llr
β€”Mathlib.Tactic.Contrapose.contrapose₁
klDiv_of_ac_of_integrable
or_not_of_imp
klDiv_of_not_integrable
klDiv_of_not_ac
klDiv_eq_zero_iff πŸ“–mathematicalβ€”klDiv
ENNReal
instZeroENNReal
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.rnDeriv_eq_one_iff_eq
MeasureTheory.Measure.haveLebesgueDecomposition_of_sigmaFinite
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.IsFiniteMeasure.toSigmaFinite
klDiv_ne_top_iff
Filter.mp_mem
MeasureTheory.lintegral_eq_zero_iff
Measurable.ennreal_ofReal
Measurable.fun_comp
measurable_klFun
Measurable.ennreal_toReal
MeasureTheory.Measure.measurable_rnDeriv
klDiv_eq_lintegral_klFun
Filter.univ_mem'
le_antisymm
klFun_nonneg
ENNReal.toReal_nonneg
ENNReal.toReal_eq_one_iff
klFun_eq_zero_iff
klDiv_self
klDiv_ne_top_iff πŸ“–mathematicalβ€”MeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.llr
β€”β€”
klDiv_of_ac_of_integrable πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.llr
klDiv
ENNReal.ofReal
Real.instSub
Real.instAdd
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.Measure.real
Set.univ
β€”klDiv_def
klDiv_of_not_ac πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuousklDiv
Top.top
ENNReal
instTopENNReal
β€”klDiv_def
klDiv_of_not_integrable πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.llr
klDiv
Top.top
ENNReal
instTopENNReal
β€”klDiv_def
klDiv_self πŸ“–mathematicalβ€”klDiv
ENNReal
instZeroENNReal
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.llr_self
klDiv_def
MeasureTheory.integrable_congr
MeasureTheory.Measure.AbsolutelyContinuous.rfl
MeasureTheory.integrable_zero
MeasureTheory.integral_congr_ae
MeasureTheory.integral_zero
zero_add
sub_self
ENNReal.ofReal_zero
klDiv_zero_left πŸ“–mathematicalβ€”klDiv
MeasureTheory.Measure
MeasureTheory.Measure.instZero
DFunLike.coe
Set
ENNReal
MeasureTheory.Measure.instFunLike
Set.univ
β€”MeasureTheory.integral_zero_measure
zero_add
sub_zero
MeasureTheory.ofReal_measureReal
klDiv_of_ac_of_integrable
MeasureTheory.Measure.AbsolutelyContinuous.zero
MeasureTheory.integrable_zero_measure
klDiv_zero_right πŸ“–mathematicalβ€”klDiv
MeasureTheory.Measure
MeasureTheory.Measure.instZero
Top.top
ENNReal
instTopENNReal
β€”klDiv_of_not_ac
Function.mt
MeasureTheory.Measure.absolutelyContinuous_zero_iff
mul_klFun_le_toReal_klDiv πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.llr
Real.instLE
Real.instMul
MeasureTheory.Measure.real
Set.univ
klFun
DivInvMonoid.toDiv
Real.instDivInvMonoid
ENNReal.toReal
klDiv
β€”MeasureTheory.mul_le_integral_rnDeriv_of_ac
convexOn_klFun
Continuous.continuousWithinAt
continuous_klFun
integrable_klFun_rnDeriv_iff
toReal_klDiv_eq_integral_klFun
mul_log_le_klDiv πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.ofReal
Real
Real.instSub
Real.instAdd
Real.instMul
MeasureTheory.Measure.real
Set.univ
Real.log
DivInvMonoid.toDiv
Real.instDivInvMonoid
klDiv
β€”ENNReal.ofReal_toReal
klDiv_ne_top_iff
ENNReal.ofReal_le_ofReal
mul_log_le_toReal_klDiv
klDiv_of_not_integrable
klDiv_of_not_ac
mul_log_le_toReal_klDiv πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.llr
Real.instLE
Real.instSub
Real.instAdd
Real.instMul
MeasureTheory.Measure.real
Set.univ
Real.log
DivInvMonoid.toDiv
Real.instDivInvMonoid
ENNReal.toReal
klDiv
β€”zero_div
Real.log_zero
MulZeroClass.mul_zero
zero_add
sub_zero
klDiv_zero_left
MeasureTheory.Measure.absolutelyContinuous_zero_iff
LE.le.trans
le_of_eq
mul_div_cancelβ‚€
klFun.eq_1
mul_sub
mul_add
Distrib.leftDistribClass
mul_one
mul_assoc
mul_klFun_le_toReal_klDiv
toReal_klDiv πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.llr
ENNReal.toReal
klDiv
Real.instSub
Real.instAdd
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.Measure.real
Set.univ
β€”klDiv_of_ac_of_integrable
ENNReal.toReal_ofReal
integral_llr_add_sub_measure_univ_nonneg
toReal_klDiv_eq_integral_klFun πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuousENNReal.toReal
klDiv
MeasureTheory.integral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
klFun
MeasureTheory.Measure.rnDeriv
β€”klDiv_eq_integral_klFun
ENNReal.toReal_ofReal
MeasureTheory.integral_nonneg
Real.instIsOrderedAddMonoid
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
klFun_nonneg
ENNReal.toReal_nonneg
MeasureTheory.integral_undef
integrable_klFun_rnDeriv_iff
klDiv_of_not_integrable
ENNReal.toReal_top
toReal_klDiv_of_measure_eq πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuous
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
Set.univ
ENNReal.toReal
klDiv
MeasureTheory.integral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.llr
β€”toReal_klDiv
add_sub_cancel_right
klDiv_of_not_integrable
MeasureTheory.integral_undef
ENNReal.toReal_top

---

← Back to Index