Documentation Verification Report

KLFun

πŸ“ Source: Mathlib/InformationTheory/KullbackLeibler/KLFun.lean

Statistics

MetricCount
DefinitionsklFun
1
Theoremscontinuous_klFun, convexOn_Ioi_klFun, convexOn_klFun, deriv_klFun, hasDerivAt_klFun, integrable_klFun_rnDeriv_iff, integral_klFun_rnDeriv, isMinOn_klFun, klFun_apply, klFun_eq_zero_iff, klFun_nonneg, klFun_one, klFun_zero, leftDeriv_klFun, leftDeriv_klFun_one, measurable_klFun, not_differentiableAt_klFun_zero, not_differentiableWithinAt_klFun_Iio_zero, not_differentiableWithinAt_klFun_Ioi_zero, rightDeriv_klFun, rightDeriv_klFun_one, strictConvexOn_klFun, stronglyMeasurable_klFun, tendsto_klFun_atTop, tendsto_rightDeriv_klFun_atTop
25
Total26

InformationTheory

Definitions

NameCategoryTheorems
klFun πŸ“–CompOp
29 mathmath: integrable_klFun_rnDeriv_iff, klFun_eq_zero_iff, tendsto_klFun_atTop, klFun_apply, leftDeriv_klFun_one, not_differentiableWithinAt_klFun_Iio_zero, toReal_klDiv_eq_integral_klFun, measurable_klFun, tendsto_rightDeriv_klFun_atTop, hasDerivAt_klFun, leftDeriv_klFun, integral_klFun_rnDeriv, klDiv_eq_lintegral_klFun, klDiv_eq_integral_klFun, convexOn_klFun, klFun_zero, klFun_nonneg, isMinOn_klFun, rightDeriv_klFun_one, rightDeriv_klFun, klFun_one, strictConvexOn_klFun, continuous_klFun, stronglyMeasurable_klFun, not_differentiableWithinAt_klFun_Ioi_zero, convexOn_Ioi_klFun, not_differentiableAt_klFun_zero, deriv_klFun, mul_klFun_le_toReal_klDiv

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_klFun πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
klFun
β€”Continuous.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
Continuous.fun_add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Real.continuous_mul_log
continuous_const
continuous_id'
convexOn_Ioi_klFun πŸ“–mathematicalβ€”ConvexOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ioi
Real.instPreorder
Real.instZero
klFun
β€”ConvexOn.subset
convexOn_klFun
Set.Ioi_subset_Ici
le_rfl
convex_Ioi
Real.instIsOrderedCancelAddMonoid
IsStrictOrderedModule.toPosSMulStrictMono
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
convexOn_klFun πŸ“–mathematicalβ€”ConvexOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ici
Real.instPreorder
Real.instZero
klFun
β€”StrictConvexOn.convexOn
strictConvexOn_klFun
deriv_klFun πŸ“–mathematicalβ€”deriv
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
klFun
Real.log
β€”Real.log_zero
deriv_zero_of_not_differentiableAt
not_differentiableAt_klFun_zero
HasDerivAt.deriv
hasDerivAt_klFun
hasDerivAt_klFun πŸ“–mathematicalβ€”HasDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
IsModuleTopology.toContinuousSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
Real.instAdd
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
IsTopologicalSemiring.toIsModuleTopology
Real.semiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instIsTopologicalRingReal
klFun
Real.log
β€”IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
HasDerivAt.sub
HasDerivAt.add
Real.hasDerivAt_mul_log
hasDerivAt_const
hasDerivAt_id
integrable_klFun_rnDeriv_iff πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuousMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
klFun
ENNReal.toReal
MeasureTheory.Measure.rnDeriv
MeasureTheory.llr
β€”MeasureTheory.integrable_add_iff_integrable_left'
MeasureTheory.Integrable.sub'
MeasureTheory.integrable_const
MeasureTheory.Measure.integrable_toReal_rnDeriv
MeasureTheory.integrable_rnDeriv_mul_log_iff
MeasureTheory.IsFiniteMeasure.toSigmaFinite
MeasureTheory.Measure.haveLebesgueDecomposition_of_sigmaFinite
MeasureTheory.instSFiniteOfSigmaFinite
klFun.eq_1
add_sub_assoc
integral_klFun_rnDeriv πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.llr
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
klFun
ENNReal.toReal
MeasureTheory.Measure.rnDeriv
Real.instSub
Real.instAdd
MeasureTheory.Measure.real
Set.univ
β€”MeasureTheory.integral_sub
MeasureTheory.Integrable.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
MeasureTheory.integrable_rnDeriv_mul_log_iff
MeasureTheory.IsFiniteMeasure.toSigmaFinite
MeasureTheory.Measure.haveLebesgueDecomposition_of_sigmaFinite
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.integrable_const
MeasureTheory.Measure.integrable_toReal_rnDeriv
MeasureTheory.integral_add
MeasureTheory.integral_const
Real.instCompleteSpace
MeasureTheory.Measure.integral_toReal_rnDeriv
smul_eq_mul
mul_one
MeasureTheory.integral_rnDeriv_smul
isMinOn_klFun πŸ“–mathematicalβ€”IsMinOn
Real
Real.instPreorder
klFun
Set.Ici
Real.instZero
Real.instOne
β€”ConvexOn.isMinOn_of_rightDeriv_eq_zero
convexOn_klFun
interior_Ici'
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMinOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
rightDeriv_klFun
Real.log_one
klFun_apply πŸ“–mathematicalβ€”klFun
Real
Real.instSub
Real.instAdd
Real.instMul
Real.log
Real.instOne
β€”β€”
klFun_eq_zero_iff πŸ“–mathematicalReal
Real.instLE
Real.instZero
klFun
Real.instOne
β€”StrictConvexOn.eq_of_isMinOn
Real.instIsStrictOrderedRing
Real.instIsOrderedAddMonoid
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
strictConvexOn_klFun
isMinOn_iff
klFun_nonneg
isMinOn_klFun
zero_le_one'
Real.instZeroLEOneClass
Real.log_one
MulZeroClass.mul_zero
zero_add
sub_self
klFun_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
klFunβ€”isMinOn_klFun
klFun_one
klFun_one πŸ“–mathematicalβ€”klFun
Real
Real.instOne
Real.instZero
β€”Real.log_one
MulZeroClass.mul_zero
zero_add
sub_self
klFun_zero πŸ“–mathematicalβ€”klFun
Real
Real.instZero
Real.instOne
β€”Real.log_zero
MulZeroClass.mul_zero
zero_add
sub_zero
leftDeriv_klFun πŸ“–mathematicalβ€”derivWithin
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
klFun
Set.Iio
Real.instPreorder
Real.log
β€”Real.log_zero
derivWithin_zero_of_not_differentiableWithinAt
not_differentiableWithinAt_klFun_Iio_zero
HasDerivWithinAt.derivWithin
HasDerivAt.hasDerivWithinAt
hasDerivAt_klFun
uniqueDiffWithinAt_Iio
leftDeriv_klFun_one πŸ“–mathematicalβ€”derivWithin
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
klFun
Set.Iio
Real.instPreorder
Real.instOne
Real.instZero
β€”leftDeriv_klFun
Real.log_one
measurable_klFun πŸ“–mathematicalβ€”Measurable
Real
Real.measurableSpace
klFun
β€”Continuous.measurable
BorelSpace.opensMeasurable
Real.borelSpace
continuous_klFun
not_differentiableAt_klFun_zero πŸ“–mathematicalβ€”DifferentiableAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
klFun
Real.instZero
β€”Real.not_DifferentiableAt_log_mul_zero
not_differentiableWithinAt_klFun_Iio_zero πŸ“–mathematicalβ€”DifferentiableWithinAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
klFun
Set.Iio
Real.instPreorder
Real.instZero
β€”not_differentiableWithinAt_of_deriv_tendsto_atBot_Iio
deriv_klFun
Real.tendsto_log_nhdsLT_zero
not_differentiableWithinAt_klFun_Ioi_zero πŸ“–mathematicalβ€”DifferentiableWithinAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
klFun
Set.Ioi
Real.instPreorder
Real.instZero
β€”not_differentiableWithinAt_of_deriv_tendsto_atBot_Ioi
deriv_klFun
Real.tendsto_log_nhdsGT_zero
rightDeriv_klFun πŸ“–mathematicalβ€”derivWithin
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
klFun
Set.Ioi
Real.instPreorder
Real.log
β€”Real.log_zero
derivWithin_zero_of_not_differentiableWithinAt
not_differentiableWithinAt_klFun_Ioi_zero
HasDerivWithinAt.derivWithin
HasDerivAt.hasDerivWithinAt
hasDerivAt_klFun
uniqueDiffWithinAt_Ioi
rightDeriv_klFun_one πŸ“–mathematicalβ€”derivWithin
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
klFun
Set.Ioi
Real.instPreorder
Real.instOne
Real.instZero
β€”rightDeriv_klFun
Real.log_one
strictConvexOn_klFun πŸ“–mathematicalβ€”StrictConvexOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ici
Real.instPreorder
Real.instZero
klFun
β€”StrictConvexOn.sub_concaveOn
Real.instIsOrderedAddMonoid
StrictConvexOn.add_convexOn
Real.instIsOrderedCancelAddMonoid
Real.strictConvexOn_mul_log
convexOn_const
convex_Ici
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
concaveOn_id
stronglyMeasurable_klFun πŸ“–mathematicalβ€”MeasureTheory.StronglyMeasurable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.measurableSpace
klFun
β€”Measurable.stronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
measurable_klFun
tendsto_klFun_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
klFun
Filter.atTop
Real.instPreorder
β€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Filter.Tendsto.atTop_add
Real.instIsOrderedAddMonoid
instOrderTopologyReal
Filter.Tendsto.atTop_mul_atTopβ‚€
Real.instIsOrderedRing
Filter.tendsto_id
Real.tendsto_log_atTop
tendsto_const_nhds
tendsto_rightDeriv_klFun_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
derivWithin
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
klFun
Set.Ioi
Real.instPreorder
Filter.atTop
β€”rightDeriv_klFun
Real.tendsto_log_atTop

---

← Back to Index