Term 📖 | CompData | 50 mathmath: Term.listDecode_encode_list, LEquiv.onTerm_symm_apply, FirstOrder.Ring.realize_neg, Term.constantsVarsEquiv_symm_apply, Term.constantsVarsEquivLeft_apply, presburger.zero_nsmul, FirstOrder.Ring.mul_def, presburger.natCast_zero, presburger.realize_add, Term.instCountableOfSigmaNatFunctions, FirstOrder.Ring.neg_def, Substructure.lift_card_closure_le_card_term, Term.small, presburger.realize_natCast, LHom.comp_onTerm, presburger.realize_one, presburger.realize_zero, FirstOrder.Ring.realize_add, Term.listEncode_injective, Term.constantsVarsEquivLeft_symm_apply, Term.realize_constantsVarsEquivLeft, Term.constantsVarsEquiv_apply, Term.card_sigma, FirstOrder.Ring.realize_mul, BoundedFormula.mapTermRelEquiv_apply, presburger.realize_nsmul, FirstOrder.Ring.realize_zero, BoundedFormula.listEncode_sigma_injective, FirstOrder.Ring.realize_one, Term.card_le, Term.relabelEquiv_symm_apply, FirstOrder.Ring.one_def, Substructure.coe_closure_eq_range_term_realize, Term.encoding_Γ, Term.relabel_id_eq_id, LEquiv.onTerm_apply, BoundedFormula.listDecode_encode_list, Term.relabel_comp_relabel, BoundedFormula.mapTermRelEquiv_symm_apply, FirstOrder.Ring.add_def, Term.encoding_decode, Term.relabelEquiv_apply, FirstOrder.Ring.zero_def, BoundedFormula.encoding_Γ, LHom.id_onTerm, BoundedFormula.mapTermRel_mapTermRel, BoundedFormula.mapTermRel_id_id_id, presburger.natCast_succ, Term.encoding_encode, presburger.succ_nsmul
|