Documentation Verification Report

AffineEquiv

πŸ“ Source: Mathlib/LinearAlgebra/AffineSpace/AffineEquiv.lean

Statistics

MetricCount
DefinitionsAffineEquiv, apply, symm_apply, constVAdd, constVAddHom, constVSub, equivLike, equivUnitsAffineMap, group, homothetyUnitsMulHom, instCoeAffineMap, instCoeOutEquiv, linear, linearHom, mk', ofBijective, ofLinearEquiv, pointReflection, prodAssoc, prodComm, prodCongr, refl, toAffineMap, toEquiv, trans, vaddConst, toAffineEquiv, Β«term_≃ᡃ[_]_Β»
28
Theoremsapply_eq_iff_eq, apply_eq_iff_eq_symm_apply, apply_lineMap, apply_symm_apply, bijective, coeFn_inj, coeFn_injective, coe_coe, coe_constVSub, coe_constVSub_symm, coe_homothetyUnitsMulHom_apply, coe_homothetyUnitsMulHom_apply_symm, coe_homothetyUnitsMulHom_eq_homothetyHom_coe, coe_linear, coe_mk, coe_mk', coe_mul, coe_one, coe_prodCongr, coe_refl, coe_refl_to_affineMap, coe_symm_toEquiv, coe_toAffineMap, coe_toEquiv, coe_trans, coe_trans_to_affineMap, constVAddHom_apply, constVAdd_add, constVAdd_apply, constVAdd_nsmul, constVAdd_symm, constVAdd_zero, constVAdd_zsmul, equivUnitsAffineMap_symm_apply_apply, equivUnitsAffineMap_symm_apply_invFun, equivUnitsAffineMap_symm_apply_symm_apply, equivUnitsAffineMap_symm_apply_toFun, ext, ext_iff, image_symm, injective, injective_pointReflection_left_of_injective_two_nsmul, injective_pointReflection_left_of_module, inv_def, linearHom_apply, linear_constVAdd, linear_equivUnitsAffineMap_symm_apply, linear_mk', linear_ofBijective, linear_ofLinearEquiv, linear_prodAssoc, linear_prodComm, linear_prodCongr, linear_refl, linear_symm, linear_toAffineMap, linear_vaddConst, map_vadd, map_vadd', mul_def, symm_eq, ofBijective_apply, ofLinearEquiv_apply, ofLinearEquiv_refl, ofLinearEquiv_trans_ofLinearEquiv, one_def, pointReflection_apply, pointReflection_apply_eq_equivPointReflection_apply, pointReflection_fixed_iff_of_injective_two_nsmul, pointReflection_fixed_iff_of_module, pointReflection_involutive, pointReflection_self, pointReflection_symm, preimage_symm, prodAssoc_apply, prodAssoc_symm_apply, prodComm_apply, prodComm_symm, prodCongr_apply, prodCongr_symm, range_eq, refl_apply, refl_trans, self_trans_symm, surjective, symm_apply_apply, symm_refl, symm_trans_self, toAffineMap_inj, toAffineMap_injective, toAffineMap_mk, toEquiv_inj, toEquiv_injective, toEquiv_pointReflection, toEquiv_refl, toEquiv_symm, trans_apply, trans_assoc, trans_refl, vaddConst_apply, vaddConst_symm_apply, val_equivUnitsAffineMap_apply, val_inv_equivUnitsAffineMap_apply, homothety_neg_one_apply, lineMap_vadd, lineMap_vsub, vadd_lineMap, vsub_lineMap, coe_toAffineEquiv
109
Total137

AffineEquiv

Definitions

NameCategoryTheorems
constVAdd πŸ“–CompOp
11 mathmath: constVAdd_apply, constVAdd_add, constVAdd_nsmul, constVAdd_zsmul, constVAdd_zero, ContinuousAffineEquiv.constVAdd_coe, linear_constVAdd, AffineSubspace.pointwise_vadd_eq_map, constVAdd_symm, AffineBasis.coord_vadd, constVAddHom_apply
constVAddHom πŸ“–CompOp
1 mathmath: constVAddHom_apply
constVSub πŸ“–CompOp
2 mathmath: coe_constVSub, coe_constVSub_symm
equivLike πŸ“–CompOp
90 mathmath: coe_symm_toEquiv, AffineIsometryEquiv.coe_mk, coe_toEquiv, sOppSide_map_iff, pointReflection_fixed_iff_of_injective_two_nsmul, AffineIsometryEquiv.coe_symm_toAffineEquiv, coe_mk', constVAdd_apply, coe_mul, continuous_of_finiteDimensional, prodComm_apply, span_eq_top_iff, apply_lineMap, prodAssoc_symm_apply, sSameSide_map_iff, AffineMap.homothety_neg_one_apply, pointReflection_fixed_iff_of_module, ContinuousAffineEquiv.prodComm_symm_apply, ofBijective_apply, pointReflection_involutive, prodAssoc_apply, coe_homothetyUnitsMulHom_apply_symm, coe_constVSub, map_vadd, map_midpoint, coeFn_inj, apply_symm_apply, list_wbtw_map_iff, LinearEquiv.coe_toAffineEquiv, wSameSide_map_iff, injective_pointReflection_left_of_injective_two_nsmul, equivUnitsAffineMap_symm_apply_apply, coe_one, sbtw_pointReflection_of_ne, AffineSubspace.topEquiv_symm_apply_coe, pointReflection_apply_eq_equivPointReflection_apply, pointReflection_midpoint_right, injective_pointReflection_left_of_module, prodCongr_apply, ext_iff, equivUnitsAffineMap_symm_apply_symm_apply, symm_apply_apply, coe_trans, ofLinearEquiv_apply, coe_refl, affineIndependent_set_of_eq_iff, pointReflection_apply, coe_constVSub_symm, AffineSubspace.comap_span, apply_eq_iff_eq_symm_apply, equivUnitsAffineMap_symm_apply_toFun, injective, AffineSubspace.sOppSide_pointReflection, midpoint_eq_iff, refl_apply, coe_toAffineMap, image_symm, AffineSubspace.topEquiv_apply, coe_coe, coe_homothetyUnitsMulHom_apply, apply_eq_iff_eq, midpoint_pointReflection_left, surjective, pointReflection_self, coe_ofEq_apply, list_sbtw_map_iff, wOppSide_map_iff, vaddConst_symm_apply, vaddConst_apply, coe_toHomeomorphOfFiniteDimensional_symm, ContinuousAffineEquiv.coe_symm_toAffineEquiv, coe_mk, AffineIsometryEquiv.coe_vaddConst', ContinuousAffineEquiv.coe_coe, coe_toHomeomorphOfFiniteDimensional, range_eq, sbtw_map_iff, preimage_symm, pointReflection_midpoint_left, wbtw_pointReflection, AffineSubspace.equivMapOfInjective_toFun, AffineSubspace.wOppSide_pointReflection, coeFn_injective, bijective, affineIndependent_iff, trans_apply, ContinuousAffineEquiv.prodAssoc_symm_apply, wbtw_map_iff, midpoint_pointReflection_right, AffineIsometryEquiv.coe_toAffineEquiv
equivUnitsAffineMap πŸ“–CompOp
7 mathmath: linear_equivUnitsAffineMap_symm_apply, val_equivUnitsAffineMap_apply, equivUnitsAffineMap_symm_apply_apply, equivUnitsAffineMap_symm_apply_symm_apply, equivUnitsAffineMap_symm_apply_toFun, val_inv_equivUnitsAffineMap_apply, equivUnitsAffineMap_symm_apply_invFun
group πŸ“–CompOp
19 mathmath: coe_homothetyUnitsMulHom_eq_homothetyHom_coe, coe_mul, linear_equivUnitsAffineMap_symm_apply, coe_homothetyUnitsMulHom_apply_symm, inv_def, val_equivUnitsAffineMap_apply, constVAdd_nsmul, constVAdd_zsmul, mul_def, equivUnitsAffineMap_symm_apply_apply, coe_one, linearHom_apply, equivUnitsAffineMap_symm_apply_symm_apply, equivUnitsAffineMap_symm_apply_toFun, coe_homothetyUnitsMulHom_apply, val_inv_equivUnitsAffineMap_apply, equivUnitsAffineMap_symm_apply_invFun, one_def, constVAddHom_apply
homothetyUnitsMulHom πŸ“–CompOp
3 mathmath: coe_homothetyUnitsMulHom_eq_homothetyHom_coe, coe_homothetyUnitsMulHom_apply_symm, coe_homothetyUnitsMulHom_apply
instCoeAffineMap πŸ“–CompOpβ€”
instCoeOutEquiv πŸ“–CompOpβ€”
linear πŸ“–CompOp
21 mathmath: linear_vaddConst, AffineIsometryEquiv.linear_eq_linear_isometry, AffineSubspace.linear_topEquiv, linear_equivUnitsAffineMap_symm_apply, linear_prodAssoc, linear_ofEq, map_vadd, linear_symm, linear_toAffineMap, linear_refl, linear_ofLinearEquiv, coe_linear, linearHom_apply, linear_constVAdd, AffineSubspace.linear_equivMapOfInjective, linear_mk', linear_prodCongr, linear_ofBijective, AffineIsometryEquiv.norm_map, map_vadd', linear_prodComm
linearHom πŸ“–CompOp
1 mathmath: linearHom_apply
mk' πŸ“–CompOp
2 mathmath: coe_mk', linear_mk'
ofBijective πŸ“–CompOp
3 mathmath: ofBijective_apply, linear_ofBijective, ofBijective.symm_eq
ofLinearEquiv πŸ“–CompOp
4 mathmath: linear_ofLinearEquiv, ofLinearEquiv_refl, ofLinearEquiv_apply, ofLinearEquiv_trans_ofLinearEquiv
pointReflection πŸ“–CompOp
21 mathmath: pointReflection_fixed_iff_of_injective_two_nsmul, AffineIsometryEquiv.pointReflection_toAffineEquiv, AffineMap.homothety_neg_one_apply, pointReflection_fixed_iff_of_module, pointReflection_involutive, toEquiv_pointReflection, injective_pointReflection_left_of_injective_two_nsmul, sbtw_pointReflection_of_ne, pointReflection_apply_eq_equivPointReflection_apply, pointReflection_midpoint_right, injective_pointReflection_left_of_module, pointReflection_apply, AffineSubspace.sOppSide_pointReflection, midpoint_eq_iff, midpoint_pointReflection_left, pointReflection_self, pointReflection_midpoint_left, wbtw_pointReflection, AffineSubspace.wOppSide_pointReflection, pointReflection_symm, midpoint_pointReflection_right
prodAssoc πŸ“–CompOp
4 mathmath: ContinuousAffineEquiv.prodAssoc_toAffineEquiv, prodAssoc_symm_apply, prodAssoc_apply, linear_prodAssoc
prodComm πŸ“–CompOp
4 mathmath: prodComm_apply, ContinuousAffineEquiv.prodComm_toAffineEquiv, prodComm_symm, linear_prodComm
prodCongr πŸ“–CompOp
5 mathmath: coe_prodCongr, prodCongr_apply, prodCongr_symm, linear_prodCongr, ContinuousAffineEquiv.prodCongr_toAffineEquiv
refl πŸ“–CompOp
16 mathmath: symm_trans_self, self_trans_symm, linear_refl, constVAdd_zero, ofLinearEquiv_refl, coe_refl, refl_apply, coe_refl_to_affineMap, AffineIsometryEquiv.toAffineEquiv_refl, trans_refl, refl_trans, symm_refl, ofEq_rfl, toEquiv_refl, ContinuousAffineEquiv.toAffineEquiv_refl, one_def
toAffineMap πŸ“–CompOp
25 mathmath: sOppSide_map_iff, coe_homothetyUnitsMulHom_eq_homothetyHom_coe, toAffineMap_inj, AffineSubspace.comap_symm, sSameSide_map_iff, toAffineMap_mk, AffineSubspace.map_symm, AffineSubspace.isometryEquivMap.toAffineMap_eq, linear_toAffineMap, val_equivUnitsAffineMap_apply, coe_trans_to_affineMap, wSameSide_map_iff, coe_linear, coe_prodCongr, toAffineMap_injective, AffineSubspace.pointwise_vadd_eq_map, AffineSubspace.comap_span, coe_toAffineMap, coe_refl_to_affineMap, coe_coe, EuclideanGeometry.Sphere.orthRadius_map, AffineBasis.coord_vadd, wOppSide_map_iff, val_inv_equivUnitsAffineMap_apply, ContinuousAffineEquiv.toContinuousAffineMap_toAffineMap
toEquiv πŸ“–CompOp
16 mathmath: coe_symm_toEquiv, coe_toEquiv, ContinuousAffineEquiv.toEquiv_symm, toEquiv_symm, ContinuousAffineEquiv.coe_toEquiv, toEquiv_injective, toEquiv_pointReflection, ContinuousAffineEquiv.toEquiv_refl, ContinuousAffineEquiv.coe_symm_toEquiv, ContinuousAffineEquiv.continuous_toFun, ContinuousAffineEquiv.continuous_invFun, toEquiv_inj, map_vadd', equivUnitsAffineMap_symm_apply_invFun, toEquiv_refl, ofBijective.symm_eq
trans πŸ“–CompOp
11 mathmath: symm_trans_self, self_trans_symm, constVAdd_add, trans_assoc, coe_trans_to_affineMap, mul_def, coe_trans, ofLinearEquiv_trans_ofLinearEquiv, trans_refl, refl_trans, trans_apply
vaddConst πŸ“–CompOp
5 mathmath: linear_vaddConst, AffineIsometryEquiv.vaddConst_toAffineEquiv, vaddConst_symm_apply, vaddConst_apply, AffineIsometryEquiv.coe_vaddConst'

Theorems

NameKindAssumesProvesValidatesDepends On
apply_eq_iff_eq πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
β€”EquivLike.toEmbeddingLike
apply_eq_iff_eq_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
symm
β€”Equiv.apply_eq_iff_eq_symm_apply
apply_lineMap πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
AffineMap
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AffineMap.instFunLike
AffineMap.lineMap
β€”AffineMap.apply_lineMap
apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
symm
β€”Equiv.apply_symm_apply
bijective πŸ“–mathematicalβ€”Function.Bijective
DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
β€”Equiv.bijective
coeFn_inj πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
β€”β€”
coeFn_injective πŸ“–mathematicalβ€”AffineEquiv
DFunLike.coe
EquivLike.toFunLike
equivLike
β€”DFunLike.coe_injective
coe_coe πŸ“–mathematicalβ€”DFunLike.coe
AffineMap
AffineMap.instFunLike
toAffineMap
AffineEquiv
EquivLike.toFunLike
equivLike
β€”β€”
coe_constVSub πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
addGroupIsAddTorsor
AddCommGroup.toAddGroup
EquivLike.toFunLike
equivLike
constVSub
VSub.vsub
AddTorsor.toVSub
β€”β€”
coe_constVSub_symm πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
addGroupIsAddTorsor
AddCommGroup.toAddGroup
EquivLike.toFunLike
equivLike
symm
constVSub
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
coe_homothetyUnitsMulHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
CommRing.toRing
EquivLike.toFunLike
equivLike
MonoidHom
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
MulOneClass.toMulOne
Units.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
group
MonoidHom.instFunLike
homothetyUnitsMulHom
AffineMap
AffineMap.instFunLike
AffineMap.homothety
Units.val
β€”β€”
coe_homothetyUnitsMulHom_apply_symm πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
CommRing.toRing
EquivLike.toFunLike
equivLike
symm
MonoidHom
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
MulOneClass.toMulOne
Units.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
group
MonoidHom.instFunLike
homothetyUnitsMulHom
AffineMap
AffineMap.instFunLike
AffineMap.homothety
Units.val
Units.instInv
β€”β€”
coe_homothetyUnitsMulHom_eq_homothetyHom_coe πŸ“–mathematicalβ€”Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AffineEquiv
CommRing.toRing
AffineMap
toAffineMap
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Units.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
group
MonoidHom.instFunLike
homothetyUnitsMulHom
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
AffineMap.instMonoid
AffineMap.homothetyHom
Units.val
β€”β€”
coe_linear πŸ“–mathematicalβ€”AffineMap.linear
toAffineMap
LinearEquiv.toLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
linear
β€”β€”
coe_mk πŸ“–mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
LinearEquiv.instEquivLike
AffineEquiv
equivLike
β€”RingHomInvPair.ids
coe_mk' πŸ“–mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
LinearEquiv.instEquivLike
VSub.vsub
AddTorsor.toVSub
AffineEquiv
equivLike
mk'
β€”RingHomInvPair.ids
coe_mul πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
group
β€”β€”
coe_one πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
group
β€”β€”
coe_prodCongr πŸ“–mathematicalβ€”toAffineMap
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
prodCongr
AffineMap.prodMap
β€”β€”
coe_refl πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
refl
β€”β€”
coe_refl_to_affineMap πŸ“–mathematicalβ€”toAffineMap
refl
AffineMap.id
β€”β€”
coe_symm_toEquiv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toEquiv
AffineEquiv
equivLike
symm
β€”β€”
coe_toAffineMap πŸ“–mathematicalβ€”DFunLike.coe
AffineMap
AffineMap.instFunLike
toAffineMap
AffineEquiv
EquivLike.toFunLike
equivLike
β€”β€”
coe_toEquiv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toEquiv
AffineEquiv
equivLike
β€”β€”
coe_trans πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
trans
β€”β€”
coe_trans_to_affineMap πŸ“–mathematicalβ€”toAffineMap
trans
AffineMap.comp
β€”β€”
constVAddHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Multiplicative
AffineEquiv
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
group
MonoidHom.instFunLike
constVAddHom
constVAdd
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
β€”β€”
constVAdd_add πŸ“–mathematicalβ€”constVAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
trans
β€”ext
AddSemigroupAction.add_vadd
constVAdd_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
constVAdd
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
β€”β€”
constVAdd_nsmul πŸ“–mathematicalβ€”constVAdd
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AffineEquiv
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
group
β€”MonoidHom.map_pow
constVAdd_symm πŸ“–mathematicalβ€”symm
constVAdd
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”ext
constVAdd_zero πŸ“–mathematicalβ€”constVAdd
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
refl
β€”ext
zero_vadd
constVAdd_zsmul πŸ“–mathematicalβ€”constVAdd
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AffineEquiv
DivInvMonoid.toZPow
Group.toDivInvMonoid
group
β€”MonoidHom.map_zpow
equivUnitsAffineMap_symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
MulEquiv
Units
AffineMap
AffineMap.instMonoid
Units.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
group
MulEquiv.instEquivLike
MulEquiv.symm
equivUnitsAffineMap
AffineMap.instFunLike
Units.val
β€”β€”
equivUnitsAffineMap_symm_apply_invFun πŸ“–mathematicalβ€”Equiv.invFun
toEquiv
DFunLike.coe
MulEquiv
Units
AffineMap
AffineMap.instMonoid
AffineEquiv
Units.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
group
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
equivUnitsAffineMap
AffineMap.instFunLike
Units.val
Units.instInv
β€”β€”
equivUnitsAffineMap_symm_apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
symm
MulEquiv
Units
AffineMap
AffineMap.instMonoid
Units.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
group
MulEquiv.instEquivLike
MulEquiv.symm
equivUnitsAffineMap
AffineMap.instFunLike
Units.val
Units.instInv
β€”β€”
equivUnitsAffineMap_symm_apply_toFun πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
MulEquiv
Units
AffineMap
AffineMap.instMonoid
Units.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
group
MulEquiv.instEquivLike
MulEquiv.symm
equivUnitsAffineMap
AffineMap.instFunLike
Units.val
β€”β€”
ext πŸ“–β€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
β€”ext
image_symm πŸ“–mathematicalβ€”Set.image
DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
symm
Set.preimage
β€”Equiv.image_eq_preimage_symm
injective πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
β€”Equiv.injective
injective_pointReflection_left_of_injective_two_nsmul πŸ“–mathematicalAddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
pointReflection
β€”Equiv.injective_pointReflection_left_of_injective_two_nsmul
injective_pointReflection_left_of_module πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
pointReflection
β€”Nat.instAtLeastTwoHAddOfNat
injective_pointReflection_left_of_injective_two_nsmul
IsUnit.smul_left_cancel
isUnit_of_invertible
two_smul
two_nsmul
inv_def πŸ“–mathematicalβ€”AffineEquiv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
group
symm
β€”β€”
linearHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
AffineEquiv
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
group
LinearEquiv.automorphismGroup
MonoidHom.instFunLike
linearHom
linear
β€”RingHomInvPair.ids
linear_constVAdd πŸ“–mathematicalβ€”linear
constVAdd
LinearEquiv.refl
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”RingHomInvPair.ids
linear_equivUnitsAffineMap_symm_apply πŸ“–mathematicalβ€”linear
DFunLike.coe
MulEquiv
Units
AffineMap
AffineMap.instMonoid
AffineEquiv
Units.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
group
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
equivUnitsAffineMap
LinearMap.GeneralLinearGroup
Ring.toSemiring
AddCommGroup.toAddCommMonoid
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
LinearMap
Module.End.instMonoid
LinearEquiv.automorphismGroup
LinearMap.GeneralLinearGroup.generalLinearEquiv
MonoidHom
Units.instMulOneClass
MonoidHom.instFunLike
Units.map
AffineMap.linearHom
β€”β€”
linear_mk' πŸ“–mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
LinearEquiv.instEquivLike
VSub.vsub
AddTorsor.toVSub
linear
mk'
β€”RingHomInvPair.ids
linear_ofBijective πŸ“–mathematicalFunction.Bijective
DFunLike.coe
AffineMap
AffineMap.instFunLike
linear
ofBijective
LinearEquiv.ofBijective
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
AffineMap.linear
β€”β€”
linear_ofLinearEquiv πŸ“–mathematicalβ€”linear
ofLinearEquiv
β€”RingHomInvPair.ids
linear_prodAssoc πŸ“–mathematicalβ€”linear
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
Prod.instAddGroup
AddCommGroup.toAddGroup
prodAssoc
LinearEquiv.prodAssoc
β€”RingHomInvPair.ids
linear_prodComm πŸ“–mathematicalβ€”linear
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
prodComm
LinearEquiv.prodComm
β€”RingHomInvPair.ids
linear_prodCongr πŸ“–mathematicalβ€”linear
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
prodCongr
LinearEquiv.prodCongr
β€”RingHomInvPair.ids
linear_refl πŸ“–mathematicalβ€”linear
refl
LinearEquiv.refl
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”RingHomInvPair.ids
linear_symm πŸ“–mathematicalβ€”linear
symm
LinearEquiv.symm
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
β€”RingHomInvPair.ids
linear_toAffineMap πŸ“–mathematicalβ€”AffineMap.linear
toAffineMap
LinearEquiv.toLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
linear
β€”β€”
linear_vaddConst πŸ“–mathematicalβ€”linear
addGroupIsAddTorsor
AddCommGroup.toAddGroup
vaddConst
LinearEquiv.refl
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”RingHomInvPair.ids
map_vadd πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
LinearEquiv.instEquivLike
linear
β€”map_vadd'
map_vadd' πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toEquiv
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
LinearEquiv.instEquivLike
linear
β€”β€”
mul_def πŸ“–mathematicalβ€”AffineEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
group
trans
β€”β€”
ofBijective_apply πŸ“–mathematicalFunction.Bijective
DFunLike.coe
AffineMap
AffineMap.instFunLike
AffineEquiv
EquivLike.toFunLike
equivLike
ofBijective
β€”β€”
ofLinearEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
ofLinearEquiv
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
LinearEquiv.instEquivLike
VSub.vsub
AddTorsor.toVSub
β€”RingHomInvPair.ids
ofLinearEquiv_refl πŸ“–mathematicalβ€”ofLinearEquiv
LinearEquiv.refl
Ring.toSemiring
AddCommGroup.toAddCommMonoid
refl
β€”ext
vsub_vadd
ofLinearEquiv_trans_ofLinearEquiv πŸ“–mathematicalβ€”trans
ofLinearEquiv
LinearEquiv.trans
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
β€”RingHomInvPair.ids
ext
RingHomCompTriple.ids
map_vadd
vsub_self
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
zero_vadd
one_def πŸ“–mathematicalβ€”AffineEquiv
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
group
refl
β€”β€”
pointReflection_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
pointReflection
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
VSub.vsub
AddTorsor.toVSub
β€”β€”
pointReflection_apply_eq_equivPointReflection_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
pointReflection
Equiv.Perm
Equiv.instEquivLike
Equiv.pointReflection
AddCommGroup.toAddGroup
β€”β€”
pointReflection_fixed_iff_of_injective_two_nsmul πŸ“–mathematicalAddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
pointReflection
β€”Equiv.pointReflection_fixed_iff_of_injective_two_nsmul
pointReflection_fixed_iff_of_module πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
pointReflection
β€”Nat.instAtLeastTwoHAddOfNat
injective_pointReflection_left_of_module
pointReflection_self
pointReflection_involutive πŸ“–mathematicalβ€”Function.Involutive
DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
pointReflection
β€”Equiv.pointReflection_involutive
pointReflection_self πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
pointReflection
β€”vsub_vadd
pointReflection_symm πŸ“–mathematicalβ€”symm
pointReflection
β€”toEquiv_injective
Equiv.pointReflection_symm
preimage_symm πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
symm
Set.image
β€”image_symm
prodAssoc_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
Prod.instAddGroup
AddCommGroup.toAddGroup
EquivLike.toFunLike
equivLike
prodAssoc
β€”β€”
prodAssoc_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
Prod.instAddGroup
EquivLike.toFunLike
equivLike
symm
prodAssoc
β€”β€”
prodComm_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
EquivLike.toFunLike
equivLike
prodComm
β€”β€”
prodComm_symm πŸ“–mathematicalβ€”symm
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
prodComm
β€”β€”
prodCongr_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
EquivLike.toFunLike
equivLike
prodCongr
β€”β€”
prodCongr_symm πŸ“–mathematicalβ€”symm
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
prodCongr
β€”β€”
range_eq πŸ“–mathematicalβ€”Set.range
DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
Set.univ
β€”EquivLike.range_eq_univ
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
refl
β€”β€”
refl_trans πŸ“–mathematicalβ€”trans
refl
β€”ext
self_trans_symm πŸ“–mathematicalβ€”trans
symm
refl
β€”ext
symm_apply_apply
surjective πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
β€”Equiv.surjective
symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
symm
β€”Equiv.symm_apply_apply
symm_refl πŸ“–mathematicalβ€”symm
refl
β€”β€”
symm_trans_self πŸ“–mathematicalβ€”trans
symm
refl
β€”ext
apply_symm_apply
toAffineMap_inj πŸ“–mathematicalβ€”toAffineMapβ€”toAffineMap_injective
toAffineMap_injective πŸ“–mathematicalβ€”AffineEquiv
AffineMap
toAffineMap
β€”RingHomInvPair.ids
toAffineMap_mk πŸ“–mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
LinearEquiv.instEquivLike
toAffineMap
LinearEquiv.toLinearMap
β€”RingHomInvPair.ids
toEquiv_inj πŸ“–mathematicalβ€”toEquivβ€”toEquiv_injective
toEquiv_injective πŸ“–mathematicalβ€”AffineEquiv
Equiv
toEquiv
β€”ext
Equiv.ext_iff
toEquiv_pointReflection πŸ“–mathematicalβ€”toEquiv
pointReflection
Equiv.pointReflection
AddCommGroup.toAddGroup
β€”β€”
toEquiv_refl πŸ“–mathematicalβ€”toEquiv
refl
Equiv.refl
β€”β€”
toEquiv_symm πŸ“–mathematicalβ€”toEquiv
symm
Equiv.symm
β€”β€”
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
trans
β€”β€”
trans_assoc πŸ“–mathematicalβ€”transβ€”ext
trans_refl πŸ“–mathematicalβ€”trans
refl
β€”ext
vaddConst_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
addGroupIsAddTorsor
AddCommGroup.toAddGroup
EquivLike.toFunLike
equivLike
vaddConst
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
β€”β€”
vaddConst_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
addGroupIsAddTorsor
AddCommGroup.toAddGroup
EquivLike.toFunLike
equivLike
symm
vaddConst
VSub.vsub
AddTorsor.toVSub
β€”β€”
val_equivUnitsAffineMap_apply πŸ“–mathematicalβ€”Units.val
AffineMap
AffineMap.instMonoid
DFunLike.coe
MulEquiv
AffineEquiv
Units
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
group
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
equivUnitsAffineMap
toAffineMap
β€”β€”
val_inv_equivUnitsAffineMap_apply πŸ“–mathematicalβ€”Units.val
AffineMap
AffineMap.instMonoid
Units
Units.instInv
DFunLike.coe
MulEquiv
AffineEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
group
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
equivUnitsAffineMap
toAffineMap
symm
β€”β€”

AffineEquiv.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”
symm_apply πŸ“–CompOpβ€”

AffineEquiv.ofBijective

Theorems

NameKindAssumesProvesValidatesDepends On
symm_eq πŸ“–mathematicalFunction.Bijective
DFunLike.coe
AffineMap
AffineMap.instFunLike
AffineEquiv.toEquiv
AffineEquiv.symm
AffineEquiv.ofBijective
Equiv.symm
Equiv.ofBijective
β€”β€”

AffineMap

Theorems

NameKindAssumesProvesValidatesDepends On
homothety_neg_one_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineMap
CommRing.toRing
instFunLike
homothety
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AffineEquiv
EquivLike.toFunLike
AffineEquiv.equivLike
AffineEquiv.pointReflection
β€”neg_smul
one_smul
neg_vsub_eq_vsub_rev
lineMap_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
DFunLike.coe
AffineMap
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instFunLike
lineMap
β€”AffineEquiv.apply_lineMap
lineMap_vsub πŸ“–mathematicalβ€”VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
DFunLike.coe
AffineMap
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instFunLike
lineMap
β€”AffineEquiv.apply_lineMap
vadd_lineMap πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
DFunLike.coe
AffineMap
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instFunLike
lineMap
β€”AffineEquiv.apply_lineMap
vsub_lineMap πŸ“–mathematicalβ€”VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
DFunLike.coe
AffineMap
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instFunLike
lineMap
β€”AffineEquiv.apply_lineMap

LinearEquiv

Definitions

NameCategoryTheorems
toAffineEquiv πŸ“–CompOp
2 mathmath: coe_toAffineEquiv, LinearIsometryEquiv.toAffineIsometryEquiv_toAffineEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toAffineEquiv πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
addGroupIsAddTorsor
AddCommGroup.toAddGroup
EquivLike.toFunLike
AffineEquiv.equivLike
toAffineEquiv
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
instEquivLike
β€”RingHomInvPair.ids

(root)

Definitions

NameCategoryTheorems
AffineEquiv πŸ“–CompData
106 mathmath: AffineEquiv.coe_symm_toEquiv, AffineIsometryEquiv.coe_mk, AffineEquiv.coe_toEquiv, AffineEquiv.sOppSide_map_iff, AffineEquiv.pointReflection_fixed_iff_of_injective_two_nsmul, AffineIsometryEquiv.coe_symm_toAffineEquiv, AffineEquiv.coe_mk', AffineEquiv.constVAdd_apply, AffineEquiv.coe_homothetyUnitsMulHom_eq_homothetyHom_coe, AffineEquiv.coe_mul, AffineEquiv.continuous_of_finiteDimensional, AffineEquiv.prodComm_apply, AffineEquiv.span_eq_top_iff, AffineEquiv.apply_lineMap, AffineEquiv.prodAssoc_symm_apply, AffineEquiv.sSameSide_map_iff, AffineEquiv.linear_equivUnitsAffineMap_symm_apply, AffineMap.homothety_neg_one_apply, AffineEquiv.pointReflection_fixed_iff_of_module, ContinuousAffineEquiv.prodComm_symm_apply, AffineEquiv.ofBijective_apply, AffineEquiv.pointReflection_involutive, AffineEquiv.prodAssoc_apply, AffineEquiv.coe_homothetyUnitsMulHom_apply_symm, AffineEquiv.coe_constVSub, AffineEquiv.map_vadd, AffineEquiv.inv_def, AffineEquiv.map_midpoint, AffineEquiv.coeFn_inj, AffineEquiv.val_equivUnitsAffineMap_apply, AffineEquiv.apply_symm_apply, AffineEquiv.constVAdd_nsmul, AffineEquiv.constVAdd_zsmul, AffineEquiv.toEquiv_injective, AffineEquiv.list_wbtw_map_iff, LinearEquiv.coe_toAffineEquiv, AffineEquiv.mul_def, AffineEquiv.wSameSide_map_iff, AffineEquiv.injective_pointReflection_left_of_injective_two_nsmul, AffineEquiv.toAffineMap_injective, ContinuousAffineEquiv.toAffineEquiv_injective, AffineEquiv.equivUnitsAffineMap_symm_apply_apply, AffineEquiv.coe_one, sbtw_pointReflection_of_ne, AffineSubspace.topEquiv_symm_apply_coe, AffineEquiv.pointReflection_apply_eq_equivPointReflection_apply, AffineEquiv.linearHom_apply, AffineEquiv.pointReflection_midpoint_right, AffineEquiv.injective_pointReflection_left_of_module, AffineEquiv.prodCongr_apply, AffineEquiv.ext_iff, AffineEquiv.equivUnitsAffineMap_symm_apply_symm_apply, AffineEquiv.symm_apply_apply, AffineEquiv.coe_trans, AffineEquiv.ofLinearEquiv_apply, AffineEquiv.coe_refl, AffineEquiv.affineIndependent_set_of_eq_iff, AffineEquiv.pointReflection_apply, AffineEquiv.coe_constVSub_symm, AffineSubspace.comap_span, AffineEquiv.apply_eq_iff_eq_symm_apply, AffineEquiv.equivUnitsAffineMap_symm_apply_toFun, AffineEquiv.injective, AffineSubspace.sOppSide_pointReflection, midpoint_eq_iff, AffineEquiv.refl_apply, AffineIsometryEquiv.toAffineEquiv_injective, AffineEquiv.coe_toAffineMap, AffineEquiv.image_symm, AffineSubspace.topEquiv_apply, AffineEquiv.coe_coe, AffineEquiv.coe_homothetyUnitsMulHom_apply, AffineEquiv.apply_eq_iff_eq, AffineEquiv.midpoint_pointReflection_left, AffineEquiv.surjective, AffineEquiv.pointReflection_self, AffineEquiv.coe_ofEq_apply, AffineEquiv.list_sbtw_map_iff, AffineEquiv.wOppSide_map_iff, AffineEquiv.vaddConst_symm_apply, AffineEquiv.vaddConst_apply, AffineEquiv.coe_toHomeomorphOfFiniteDimensional_symm, ContinuousAffineEquiv.coe_symm_toAffineEquiv, AffineEquiv.val_inv_equivUnitsAffineMap_apply, AffineEquiv.coe_mk, AffineIsometryEquiv.coe_vaddConst', ContinuousAffineEquiv.coe_coe, AffineEquiv.coe_toHomeomorphOfFiniteDimensional, AffineEquiv.range_eq, AffineEquiv.sbtw_map_iff, AffineEquiv.preimage_symm, AffineEquiv.pointReflection_midpoint_left, wbtw_pointReflection, AffineSubspace.equivMapOfInjective_toFun, AffineSubspace.wOppSide_pointReflection, AffineEquiv.coeFn_injective, AffineEquiv.bijective, AffineEquiv.affineIndependent_iff, AffineEquiv.trans_apply, ContinuousAffineEquiv.prodAssoc_symm_apply, AffineEquiv.wbtw_map_iff, AffineEquiv.equivUnitsAffineMap_symm_apply_invFun, AffineEquiv.midpoint_pointReflection_right, AffineEquiv.one_def, AffineIsometryEquiv.coe_toAffineEquiv, AffineEquiv.constVAddHom_apply
Β«term_≃ᡃ[_]_Β» πŸ“–CompOpβ€”

---

← Back to Index