Documentation Verification Report

Basic

πŸ“ Source: Mathlib/LinearAlgebra/AffineSpace/AffineSubspace/Basic.lean

Statistics

MetricCount
DefinitionsΒ«term_βˆ₯_Β», ofEq, comap, gciMapComap, inclusion, map, subtype, toAddTorsor, topEquiv, unique_affineSpan_singleton
10
Theoremscoe_ofEq_apply, ext_on, linear_ofEq, ofEq_rfl, ofEq_symm, span_eq_top_iff, eqOn_affineSpan, ext_on, lineMap_mem, lineMap_mem_affineSpan_pair, lineMap_rev_mem_affineSpan_pair, linear_eqOn_vectorSpan, map_top_of_surjective, map_vectorSpan, span_eq_top_of_surjective, vectorSpan_image_eq_submodule_map, direction_eq, refl, trans, vectorSpan_eq, affineSpan_pair_comm, affineSpan_pair_parallel_iff_exists_unit_smul, affineSpan_pair_parallel_iff_exists_unit_smul', affineSpan_pair_parallel_iff_vectorSpan_eq, affineSpan_parallel_iff_vectorSpan_eq_and_eq_empty_iff_eq_empty, bot_parallel_iff_eq_bot, coe_affineSpan_singleton, coe_comap, coe_inclusion_apply, coe_map, coe_subtype, coe_vadd, coe_vsub, comap_bot, comap_comap, comap_id, comap_inf, comap_map_eq_of_injective, comap_mono, comap_span, comap_supr, comap_symm, comap_top, direction_affineSpan_insert, direction_affineSpan_pair_le_iff_exists_smul, direction_lt_of_nonempty, direction_sup, direction_sup_eq_sup_direction, eq_univ_of_subsingleton_span_eq_top, gc_map_comap, inclusion_linear, inclusion_rfl, le_comap_map, linear_topEquiv, map_bot, map_comap_le, map_direction, map_eq_bot_iff, map_iSup, map_id, map_inf_eq, map_inf_le, map_le_iff_le_comap, map_map, map_mk', map_mono, map_span, map_sup, map_symm, mem_affineSpan_insert_iff, mem_affineSpan_singleton, mem_comap, mem_map, mem_map_iff_mem_of_injective, mem_map_of_mem, parallel_bot_iff_eq_bot, parallel_comm, parallel_iff_direction_eq_and_eq_bot_iff_eq_bot, preimage_coe_affineSpan_singleton, subsingleton_of_subsingleton_span_eq_top, subtype_apply, subtype_injective, subtype_linear, topEquiv_apply, topEquiv_symm_apply_coe, vectorSpan_union_of_mem_of_mem, vsub_left_mem_direction_iff_mem, vsub_right_mem_direction_iff_mem, affineSpan_coe_preimage_eq_top, affineSpan_pair_eq_of_left_mem_of_ne, affineSpan_pair_eq_of_mem_of_mem_of_ne, affineSpan_pair_eq_of_right_mem_of_ne, affineSpan_singleton_union_vadd_eq_top_of_span_eq_top, exists_eq_smul_of_parallel, mem_affineSpan_pair_iff_exists_lineMap_eq, mem_affineSpan_pair_iff_exists_lineMap_rev_eq, mem_vectorSpan_pair, mem_vectorSpan_pair_rev, smul_vsub_rev_vadd_mem_affineSpan_pair, smul_vsub_vadd_mem_affineSpan_pair, vadd_left_mem_affineSpan_pair, vadd_right_mem_affineSpan_pair, vectorSpan_eq_span_vsub_finset_right_ne, vectorSpan_eq_span_vsub_set_left, vectorSpan_eq_span_vsub_set_left_ne, vectorSpan_eq_span_vsub_set_right, vectorSpan_eq_span_vsub_set_right_ne, vectorSpan_image_eq_span_vsub_set_left_ne, vectorSpan_image_eq_span_vsub_set_right_ne, vectorSpan_pair, vectorSpan_pair_rev, vectorSpan_range_eq_span_range_vsub_left, vectorSpan_range_eq_span_range_vsub_left_ne, vectorSpan_range_eq_span_range_vsub_right, vectorSpan_range_eq_span_range_vsub_right_ne, vectorSpan_vadd
116
Total126

Affine

Definitions

NameCategoryTheorems
Β«term_βˆ₯_Β» πŸ“–CompOpβ€”

AffineEquiv

Definitions

NameCategoryTheorems
ofEq πŸ“–CompOp
4 mathmath: linear_ofEq, ofEq_symm, coe_ofEq_apply, ofEq_rfl

Theorems

NameKindAssumesProvesValidatesDepends On
coe_ofEq_apply πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
DFunLike.coe
AffineEquiv
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
AffineSubspace.direction
Submodule.addCommGroup
Submodule.module
AffineSubspace.toAddTorsor
EquivLike.toFunLike
equivLike
ofEq
β€”β€”
ext_on πŸ“–β€”affineSpan
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
AffineSubspace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.EqOn
DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
β€”β€”AffineMap.ext_on
linear_ofEq πŸ“–mathematicalβ€”linear
AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
AffineSubspace.direction
Submodule.addCommGroup
Submodule.module
AffineSubspace.toAddTorsor
ofEq
LinearEquiv.ofEq
β€”RingHomInvPair.ids
ofEq_rfl πŸ“–mathematicalβ€”ofEq
AffineSubspace
refl
SetLike.instMembership
AffineSubspace.instSetLike
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
AffineSubspace.direction
Submodule.addCommGroup
Submodule.module
AffineSubspace.toAddTorsor
β€”β€”
ofEq_symm πŸ“–mathematicalβ€”symm
AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
AffineSubspace.direction
Submodule.addCommGroup
Submodule.module
AffineSubspace.toAddTorsor
ofEq
β€”ext
span_eq_top_iff πŸ“–mathematicalβ€”affineSpan
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
AffineSubspace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.image
DFunLike.coe
AffineEquiv
EquivLike.toFunLike
equivLike
β€”AffineMap.span_eq_top_of_surjective
surjective
Set.image_comp
Set.image_congr
symm_apply_apply
Set.image_id'

AffineMap

Theorems

NameKindAssumesProvesValidatesDepends On
eqOn_affineSpan πŸ“–mathematicalSet.EqOn
DFunLike.coe
AffineMap
instFunLike
SetLike.coe
AffineSubspace
AffineSubspace.instSetLike
affineSpan
β€”Set.eq_empty_or_nonempty
AffineSubspace.span_empty
map_vadd
linear_eqOn_vectorSpan
ext_on πŸ“–β€”affineSpan
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
AffineSubspace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.EqOn
DFunLike.coe
AffineMap
instFunLike
β€”β€”eqOn_affineSpan
lineMap_mem πŸ“–mathematicalAffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
DFunLike.coe
AffineMap
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instFunLike
lineMap
β€”lineMap_apply
AffineSubspace.smul_vsub_vadd_mem
lineMap_mem_affineSpan_pair πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
DFunLike.coe
AffineMap
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instFunLike
lineMap
β€”lineMap_mem
left_mem_affineSpan_pair
right_mem_affineSpan_pair
lineMap_rev_mem_affineSpan_pair πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
DFunLike.coe
AffineMap
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instFunLike
lineMap
β€”lineMap_mem
right_mem_affineSpan_pair
left_mem_affineSpan_pair
linear_eqOn_vectorSpan πŸ“–mathematicalSet.EqOn
DFunLike.coe
AffineMap
instFunLike
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
linear
SetLike.coe
Submodule
Submodule.setLike
vectorSpan
β€”LinearMap.eqOn_span
linearMap_vsub
map_top_of_surjective πŸ“–mathematicalDFunLike.coe
AffineMap
instFunLike
AffineSubspace.map
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
AffineSubspace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”AffineSubspace.ext_iff
Set.image_univ_of_surjective
map_vectorSpan πŸ“–mathematicalβ€”Submodule.map
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
linear
vectorSpan
Set.image
DFunLike.coe
AffineMap
instFunLike
β€”RingHomSurjective.ids
image_vsub_image
Submodule.span_image
span_eq_top_of_surjective πŸ“–mathematicalDFunLike.coe
AffineMap
instFunLike
affineSpan
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
AffineSubspace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.imageβ€”AffineSubspace.map_span
map_top_of_surjective
vectorSpan_image_eq_submodule_map πŸ“–mathematicalβ€”Submodule.map
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
linear
vectorSpan
Set.image
DFunLike.coe
AffineMap
instFunLike
β€”map_vectorSpan

AffineSubspace

Definitions

NameCategoryTheorems
comap πŸ“–CompOp
18 mathmath: comap_bot, comap_symm, map_symm, Affine.Simplex.altitude_restrict_eq_comap_subtype, mem_comap, comap_map_eq_of_injective, map_comap_le, comap_span, gc_map_comap, comap_comap, map_le_iff_le_comap, comap_supr, le_comap_map, comap_top, comap_id, comap_mono, coe_comap, comap_inf
gciMapComap πŸ“–CompOpβ€”
inclusion πŸ“–CompOp
36 mathmath: Affine.Simplex.altitudeFoot_restrict, Affine.Simplex.restrict_reindex, Affine.Simplex.faceOppositeCentroid_restrict, Affine.Simplex.restrict_map_restrict, Affine.Simplex.circumradius_restrict, Affine.Simplex.medial_restrict, Affine.Simplex.ninePointCircle_restrict, Affine.Simplex.face_restrict, Affine.Simplex.interior_restrict, inclusion_linear, Affine.Simplex.altitude_restrict_eq_comap_subtype, Affine.Simplex.ExcenterExists.touchpointWeights_restrict, Affine.Simplex.ExcenterExists.excenter_restrict, Affine.Simplex.map_altitude_restrict, Affine.Simplex.faceOpposite_restrict, Affine.Simplex.exradius_restrict, Affine.Simplex.circumcenter_restrict, Affine.Simplex.height_restrict, Affine.Simplex.incenter_restrict, Affine.Simplex.inradius_restrict, Affine.Simplex.centroid_restrict, Affine.Simplex.orthogonalProjectionSpan_restrict, Affine.Simplex.setInterior_restrict, Affine.Simplex.excenterWeights_restrict, Affine.Simplex.median_restrict, Affine.Simplex.closedInterior_restrict, Affine.Simplex.mongePoint_restrict, Affine.Simplex.eulerPoint_restrict, coe_inclusion_apply, Affine.Simplex.ExcenterExists.touchpoint_restrict, Affine.Simplex.excenterWeightsUnnorm_restrict, inclusion_rfl, Affine.Simplex.restrict_map_subtype, Affine.Simplex.restrict_map_inclusion, Affine.Simplex.restrict_points_coe, Affine.Simplex.excenterExists_restrict
map πŸ“–CompOp
54 mathmath: AffineEquiv.sOppSide_map_iff, AffineMap.restrict.bijective, map_pointwise_vadd, EuclideanGeometry.reflection_map, EuclideanGeometry.orthogonalProjection_map, comap_symm, map_mk', AffineEquiv.sSameSide_map_iff, map_symm, finiteDimensional_direction_map, isometryEquivMap.toAffineMap_eq, map_inf_eq, EuclideanGeometry.orthogonalProjection_subtype, Affine.Simplex.map_altitude_restrict, Affine.Simplex.median_map, AffineEquiv.wSameSide_map_iff, mem_map, mem_map_iff_mem_of_injective, WSameSide.map, isometryEquivMap.coe_apply, map_span, Function.Injective.sSameSide_map_iff, AffineMap.map_top_of_surjective, comap_map_eq_of_injective, map_direction, Function.Injective.sOppSide_map_iff, smul_eq_map, map_comap_le, pointwise_vadd_eq_map, map_inf_le, map_map, gc_map_comap, linear_equivMapOfInjective, Affine.Simplex.median_restrict, map_bot, map_id, map_eq_bot_iff, EuclideanGeometry.Sphere.orthRadius_map, map_le_iff_le_comap, Affine.Simplex.altitude_map, WOppSide.map, le_comap_map, map_sup, AffineEquiv.wOppSide_map_iff, EuclideanGeometry.reflection_subtype, isometryEquivMap.apply_symm_apply, Function.Injective.wSameSide_map_iff, nonempty_map, equivMapOfInjective_toFun, map_iSup, map_mono, Function.Injective.wOppSide_map_iff, mem_map_of_mem, coe_map
subtype πŸ“–CompOp
17 mathmath: subtype_apply, coe_subtypeₐᡒ, Affine.Simplex.interior_restrict, Affine.Simplex.altitude_restrict_eq_comap_subtype, EuclideanGeometry.orthogonalProjection_subtype, Affine.Simplex.map_altitude_restrict, subtypeA_toAffineMap, subtype_injective, subtype_linear, Affine.Simplex.setInterior_restrict, Affine.Simplex.median_restrict, Affine.Simplex.closedInterior_restrict, coe_subtype, EuclideanGeometry.reflection_subtype, Affine.Simplex.map_subtype_restrict, Affine.Simplex.restrict_map_subtype, subtypeₐᡒ_toAffineMap
toAddTorsor πŸ“–CompOp
138 mathmath: Affine.Simplex.altitudeFoot_restrict, coe_vsub, Affine.Simplex.orthogonalProjectionSpan_map, EuclideanGeometry.vsub_orthogonalProjection_mem_direction_orthogonal, AffineMap.restrict.bijective, Affine.Simplex.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, Affine.Simplex.restrict_reindex, Affine.Simplex.faceOppositeCentroid_restrict, EuclideanGeometry.orthogonalProjection_congr, Affine.Simplex.restrict_map_restrict, EuclideanGeometry.orthogonalProjection_contLinear, EuclideanGeometry.dist_orthogonalProjection_eq_iff_oangle_eq, coe_subtypeA, subtype_apply, EuclideanGeometry.reflection_vadd_smul_vsub_orthogonalProjection, EuclideanGeometry.inter_eq_singleton_orthogonalProjection, linear_topEquiv, Affine.Simplex.orthogonalProjectionSpan_eq_point, EuclideanGeometry.orthogonalProjection_map, Affine.Simplex.circumradius_restrict, Affine.Simplex.medial_restrict, EuclideanGeometry.angle_orthogonalProjection_self, EuclideanGeometry.orthogonalProjection_apply_mem, coe_subtypeₐᡒ, EuclideanGeometry.dist_orthogonalProjection_eq_iff_angle_eq, Affine.Simplex.ninePointCircle_restrict, Affine.Simplex.face_restrict, Affine.Simplex.interior_restrict, inclusion_linear, EuclideanGeometry.orthogonalProjection_apply', Affine.Simplex.dist_sq_eq_dist_orthogonalProjection_sq_add_dist_orthogonalProjection_sq, EuclideanGeometry.orthogonalProjection_orthogonalProjection_of_le, EuclideanGeometry.Sphere.isTangent_iff_isTangentAt_orthogonalProjection, Affine.Simplex.altitude_restrict_eq_comap_subtype, isometryEquivMap.toAffineMap_eq, signedInfDist_eq_signedDist_of_mem, Affine.Simplex.signedInfDist_apply_self, signedInfDist_eq_signedDist_orthogonalProjection, AffineEquiv.linear_ofEq, Affine.Simplex.orthogonalProjectionSpan_congr, Affine.Simplex.ExcenterExists.touchpointWeights_restrict, instIsTopologicalAddTorsorSubtypeMemSubmoduleDirection, EuclideanGeometry.orthogonalProjection_subtype, EuclideanGeometry.two_zsmul_oangle_self_orthogonalProjection, Affine.Simplex.ExcenterExists.excenter_restrict, EuclideanGeometry.orthogonalProjection_vadd_eq_self, EuclideanGeometry.oangle_orthogonalProjection_self, Affine.Simplex.map_altitude_restrict, Affine.Simplex.faceOpposite_restrict, EuclideanGeometry.dist_orthogonalProjection_eq_dist_iff_eq_of_mem, abs_signedInfDist_eq_dist_of_mem_affineSpan_insert, Affine.Simplex.exradius_restrict, Affine.Simplex.orthogonalProjection_circumcenter, subtypeA_toAffineMap, Affine.Simplex.exists_forall_dist_eq_iff_exists_excenterExists_and_eq_excenter, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_exists_dist_eq, coe_vadd, Affine.Simplex.circumcenter_restrict, AffineMap.restrict.injective, Affine.Simplex.height_restrict, EuclideanGeometry.orthogonalProjection_affineSpan_singleton, subtype_injective, subtype_linear, EuclideanGeometry.dist_sq_eq_dist_orthogonalProjection_sq_add_dist_orthogonalProjection_sq, topEquiv_symm_apply_coe, Affine.Simplex.incenter_restrict, EuclideanGeometry.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, Affine.Simplex.orthogonalProjectionSpan_faceOpposite_eq_point_rev, EuclideanGeometry.dist_orthogonalProjection_eq_infNndist, AffineMap.restrict.surjective, Affine.Simplex.inradius_restrict, AffineMap.restrict.coe_apply, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangent, EuclideanGeometry.orthogonalProjection_eq_orthogonalProjection_iff_vsub_mem, EuclideanGeometry.dist_eq_iff_dist_orthogonalProjection_eq, Affine.Simplex.centroid_restrict, EuclideanGeometry.dist_orthogonalProjection_eq_infDist, EuclideanGeometry.orthogonalProjection_mem, Affine.Simplex.orthogonalProjectionSpan_restrict, Affine.Simplex.setInterior_restrict, Affine.Simplex.excenterWeights_restrict, EuclideanGeometry.dist_orthogonalProjection_eq_zero_iff, AffineEquiv.ofEq_symm, EuclideanGeometry.exists_dist_eq_iff_exists_dist_orthogonalProjection_eq, linear_equivMapOfInjective, EuclideanGeometry.Sphere.IsTangentAt.eq_orthogonalProjection, Affine.Simplex.median_restrict, affineSpan_coe_preimage_eq_top, EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq, Affine.Simplex.closedInterior_restrict, EuclideanGeometry.orthogonalProjection_orthogonalProjection, EuclideanGeometry.orthogonalProjection_vsub_mem_direction, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_dist_eq, topEquiv_apply, Affine.Simplex.mongePoint_restrict, Affine.Simplex.eulerPoint_restrict, EuclideanGeometry.vsub_orthogonalProjection_mem_direction, coe_inclusion_apply, Affine.Simplex.ExcenterExists.touchpoint_restrict, Affine.Simplex.coe_orthogonalProjection_vadd_smul_vsub_orthogonalProjection, Affine.Simplex.excenterWeightsUnnorm_restrict, EuclideanGeometry.Sphere.IsTangent.isTangentAt, EuclideanGeometry.reflection_apply', EuclideanGeometry.oangle_self_orthogonalProjection, AffineEquiv.coe_ofEq_apply, AffineMap.restrict.linear, Affine.Simplex.abs_signedInfDist_eq_dist_of_mem_affineSpan_range, coe_subtype, Affine.Simplex.orthogonalProjectionSpan_reindex, EuclideanGeometry.orthogonalProjection_linear, signedInfDist_def, Affine.Simplex.orthogonalProjectionSpan_eulerPoint_mem_ninePointCircle, Affine.Simplex.signedInfDist_affineCombination, EuclideanGeometry.angle_self_orthogonalProjection, EuclideanGeometry.orthogonalProjection_eq_self_iff, EuclideanGeometry.reflection_subtype, inclusion_rfl, EuclideanGeometry.orthogonalProjection_vsub_mem_direction_orthogonal, EuclideanGeometry.eq_orthogonalProjection_of_eq_subspace, EuclideanGeometry.orthogonalProjection_apply, signedInfDist_apply_self, EuclideanGeometry.orthogonalProjection_vsub_orthogonalProjection, EuclideanGeometry.orthogonalProjection_mem_orthogonal, EuclideanGeometry.two_zsmul_oangle_orthogonalProjection_self, equivMapOfInjective_toFun, EuclideanGeometry.coe_orthogonalProjection_eq_iff_mem, Affine.Simplex.map_subtype_restrict, Affine.Simplex.restrict_map_subtype, Affine.Simplex.restrict_map_inclusion, EuclideanGeometry.dist_orthogonalProjection_line_eq_iff_two_zsmul_oangle_eq, EuclideanGeometry.orthogonalProjection_eq_iff_mem, EuclideanGeometry.dist_orthogonalProjection_line_eq_of_two_zsmul_oangle_eq, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangentAt, AffineEquiv.ofEq_rfl, EuclideanGeometry.dist_set_eq_iff_dist_orthogonalProjection_eq, Affine.Simplex.restrict_points_coe, Affine.Simplex.excenterExists_restrict, EuclideanGeometry.orthogonalProjection_mem_subspace_eq_self
topEquiv πŸ“–CompOp
3 mathmath: linear_topEquiv, topEquiv_symm_apply_coe, topEquiv_apply
unique_affineSpan_singleton πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
affineSpan_pair_comm πŸ“–mathematicalβ€”affineSpan
Set
Set.instInsert
Set.instSingletonSet
β€”Set.pair_comm
affineSpan_pair_parallel_iff_exists_unit_smul πŸ“–mathematicalβ€”Parallel
affineSpan
Set
Set.instInsert
Set.instSingletonSet
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Units.instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
β€”affineSpan_pair_parallel_iff_exists_unit_smul'
inv_smul_smul
affineSpan_pair_parallel_iff_exists_unit_smul' πŸ“–mathematicalβ€”Parallel
affineSpan
Set
Set.instInsert
Set.instSingletonSet
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Units.instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
β€”affineSpan_pair_parallel_iff_vectorSpan_eq
vectorSpan_pair_rev
Submodule.span_singleton_eq_span_singleton
affineSpan_pair_parallel_iff_vectorSpan_eq πŸ“–mathematicalβ€”Parallel
affineSpan
Set
Set.instInsert
Set.instSingletonSet
vectorSpan
β€”β€”
affineSpan_parallel_iff_vectorSpan_eq_and_eq_empty_iff_eq_empty πŸ“–mathematicalβ€”Parallel
affineSpan
vectorSpan
Set
Set.instEmptyCollection
β€”direction_affineSpan
affineSpan_eq_bot
parallel_iff_direction_eq_and_eq_bot_iff_eq_bot
bot_parallel_iff_eq_bot πŸ“–mathematicalβ€”Parallel
Bot.bot
AffineSubspace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”parallel_comm
parallel_bot_iff_eq_bot
coe_affineSpan_singleton πŸ“–mathematicalβ€”SetLike.coe
AffineSubspace
instSetLike
affineSpan
Set
Set.instSingletonSet
β€”Set.ext
mem_coe
vsub_right_mem_direction_iff_mem
mem_affineSpan
Set.mem_singleton
direction_affineSpan
vectorSpan_singleton
coe_comap πŸ“–mathematicalβ€”SetLike.coe
AffineSubspace
instSetLike
comap
Set.preimage
DFunLike.coe
AffineMap
AffineMap.instFunLike
β€”β€”
coe_inclusion_apply πŸ“–mathematicalAffineSubspace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
DFunLike.coe
AffineMap
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
direction
Submodule.addCommGroup
Submodule.module
toAddTorsor
Nonempty.map
Set.Elem
SetLike.coe
Set.inclusion
AffineMap.instFunLike
inclusion
β€”Nonempty.map
coe_map πŸ“–mathematicalβ€”SetLike.coe
AffineSubspace
instSetLike
map
Set.image
DFunLike.coe
AffineMap
AffineMap.instFunLike
β€”β€”
coe_subtype πŸ“–mathematicalβ€”DFunLike.coe
AffineMap
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
direction
AffineSubspace
instSetLike
Submodule.addCommGroup
Submodule.module
toAddTorsor
AffineMap.instFunLike
subtype
β€”β€”
coe_vadd πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
HVAdd.hVAdd
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
direction
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Submodule.addCommGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
toAddTorsor
β€”β€”
coe_vsub πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
direction
VSub.vsub
AffineSubspace
instSetLike
AddTorsor.toVSub
AddCommGroup.toAddGroup
Submodule.addCommGroup
toAddTorsor
β€”β€”
comap_bot πŸ“–mathematicalβ€”comap
Bot.bot
AffineSubspace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”β€”
comap_comap πŸ“–mathematicalβ€”comap
AffineMap.comp
β€”β€”
comap_id πŸ“–mathematicalβ€”comap
AffineMap.id
β€”β€”
comap_inf πŸ“–mathematicalβ€”comap
AffineSubspace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”GaloisConnection.u_inf
gc_map_comap
comap_map_eq_of_injective πŸ“–mathematicalDFunLike.coe
AffineMap
AffineMap.instFunLike
comap
map
β€”GaloisCoinsertion.u_l_eq
comap_mono πŸ“–mathematicalAffineSubspace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comapβ€”Set.preimage_mono
comap_span πŸ“–mathematicalβ€”comap
AffineEquiv.toAffineMap
affineSpan
Set.preimage
DFunLike.coe
AffineEquiv
EquivLike.toFunLike
AffineEquiv.equivLike
β€”map_symm
map_span
AffineEquiv.coe_coe
AffineEquiv.image_symm
comap_supr πŸ“–mathematicalβ€”comap
iInf
AffineSubspace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”GaloisConnection.u_iInf
gc_map_comap
comap_symm πŸ“–mathematicalβ€”comap
AffineEquiv.toAffineMap
AffineEquiv.symm
map
β€”coe_injective
AffineEquiv.preimage_symm
comap_top πŸ“–mathematicalβ€”comap
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”ext_iff
Set.preimage_univ
direction_affineSpan_insert πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
direction
affineSpan
Set
Set.instInsert
SetLike.coe
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Submodule.span
Set.instSingletonSet
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”sup_comm
Set.union_singleton
coe_affineSpan_singleton
direction_sup
mem_affineSpan
Set.mem_singleton
direction_affineSpan
vectorSpan_singleton
sup_of_le_left
direction_affineSpan_pair_le_iff_exists_smul πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
direction
affineSpan
Set
Set.instInsert
Set.instSingletonSet
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
VSub.vsub
AddTorsor.toVSub
β€”direction_affineSpan
vectorSpan_pair_rev
Submodule.span_singleton_le_iff_mem
Submodule.mem_span_singleton
direction_lt_of_nonempty πŸ“–mathematicalAffineSubspace
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Set.Nonempty
SetLike.coe
instSetLike
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
direction
β€”lt_iff_le_and_exists
SetLike.lt_iff_le_and_exists
instIsConcreteLE
direction_le
vsub_mem_direction
vsub_right_mem_direction_iff_mem
direction_sup πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
direction
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.completeLattice
Submodule.span
Set
Set.instSingletonSet
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”le_antisymm
direction_affineSpan
vectorSpan_eq_span_vsub_set_right
Set.mem_union_left
mem_coe
Submodule.span_le
sup_assoc
sup_comm
SetLike.mem_coe
Submodule.mem_sup
Submodule.zero_mem
vsub_mem_direction
zero_add
vsub_add_vsub_cancel
Submodule.mem_span_singleton_self
sup_le
sup_direction_le
direction_eq_vectorSpan
vectorSpan_def
sInf_le_sInf
Set.Subset.trans
Set.singleton_subset_iff
Set.vsub_mem_vsub
mem_affineSpan
Set.mem_union_right
direction_sup_eq_sup_direction πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
direction
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.completeLattice
β€”direction_sup
vsub_self
Submodule.span_zero_singleton
sup_of_le_left
eq_univ_of_subsingleton_span_eq_top πŸ“–mathematicalSet.Subsingleton
affineSpan
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.univβ€”nonempty_of_affineSpan_eq_top
Set.Subset.antisymm
Set.subsingleton_iff_singleton
Set.mem_univ
Set.subsingleton_univ_iff
subsingleton_of_subsingleton_span_eq_top
gc_map_comap πŸ“–mathematicalβ€”GaloisConnection
AffineSubspace
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”map_le_iff_le_comap
inclusion_linear πŸ“–mathematicalAffineSubspace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AffineMap.linear
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
direction
instSetLike
Submodule.addCommGroup
Submodule.module
toAddTorsor
Nonempty.map
Set.Elem
SetLike.coe
Set.inclusion
inclusion
Submodule.inclusion
direction_le
β€”Nonempty.map
inclusion_rfl πŸ“–mathematicalβ€”inclusion
le_refl
AffineSubspace
PartialOrder.toPreorder
instPartialOrder
AffineMap.id
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
direction
instSetLike
Submodule.addCommGroup
Submodule.module
toAddTorsor
β€”Nonempty.map
le_refl
le_comap_map πŸ“–mathematicalβ€”AffineSubspace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
map
β€”GaloisConnection.le_u_l
gc_map_comap
linear_topEquiv πŸ“–mathematicalβ€”AffineEquiv.linear
AffineSubspace
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
direction
Submodule.addCommGroup
Submodule.module
toAddTorsor
instNonemptySubtypeMemTop
topEquiv
LinearEquiv.trans
Submodule.instTop
Submodule.addCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
LinearEquiv.ofEq
direction_top
Submodule.topEquiv
β€”instNonemptySubtypeMemTop
map_bot πŸ“–mathematicalβ€”map
Bot.bot
AffineSubspace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”coe_injective
Set.image_empty
map_comap_le πŸ“–mathematicalβ€”AffineSubspace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”GaloisConnection.l_u_le
gc_map_comap
map_direction πŸ“–mathematicalβ€”direction
map
Submodule.map
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
AffineMap.linear
β€”RingHomSurjective.ids
AffineMap.map_vectorSpan
map_eq_bot_iff πŸ“–mathematicalβ€”map
Bot.bot
AffineSubspace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”coe_eq_bot_iff
Set.image_eq_empty
coe_map
map_bot
map_iSup πŸ“–mathematicalβ€”map
iSup
AffineSubspace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”GaloisConnection.l_iSup
gc_map_comap
map_id πŸ“–mathematicalβ€”map
AffineMap.id
β€”coe_injective
Set.image_id
map_inf_eq πŸ“–mathematicalDFunLike.coe
AffineMap
AffineMap.instFunLike
map
AffineSubspace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”ext
map_inf_le πŸ“–mathematicalβ€”AffineSubspace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”le_inf
map_mono
inf_le_left
inf_le_right
map_le_iff_le_comap πŸ“–mathematicalβ€”AffineSubspace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”Set.image_subset_iff
map_map πŸ“–mathematicalβ€”map
AffineMap.comp
β€”coe_injective
Set.image_image
map_mk' πŸ“–mathematicalβ€”map
mk'
DFunLike.coe
AffineMap
AffineMap.instFunLike
Submodule.map
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
AffineMap.linear
β€”ext
RingHomSurjective.ids
AffineMap.linearMap_vsub
vadd_vsub
AffineMap.map_vadd
vsub_vadd
map_mono πŸ“–mathematicalAffineSubspace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
mapβ€”Set.image_mono
map_span πŸ“–mathematicalβ€”map
affineSpan
Set.image
DFunLike.coe
AffineMap
AffineMap.instFunLike
β€”Set.eq_empty_or_nonempty
span_empty
map_bot
Set.image_empty
ext_of_direction_eq
RingHomSurjective.ids
map_direction
Submodule.map.congr_simp
direction_affineSpan
AffineMap.map_vectorSpan
Set.mem_image_of_mem
subset_affineSpan
map_sup πŸ“–mathematicalβ€”map
AffineSubspace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”GaloisConnection.l_sup
gc_map_comap
map_symm πŸ“–mathematicalβ€”map
AffineEquiv.toAffineMap
AffineEquiv.symm
comap
β€”coe_injective
AffineEquiv.image_symm
mem_affineSpan_insert_iff πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
affineSpan
Set
Set.instInsert
SetLike.coe
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
β€”vsub_right_mem_direction_iff_mem
mem_affineSpan
Set.mem_insert_of_mem
mem_coe
direction_affineSpan_insert
Submodule.mem_sup
Submodule.mem_span_singleton
vadd_mem_of_mem_direction
vsub_eq_zero_iff_eq
vsub_vadd_eq_vsub_sub
sub_eq_zero
vadd_vadd
vsub_mem_direction
vadd_vsub_assoc
mem_affineSpan_singleton πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
affineSpan
Set
Set.instSingletonSet
β€”coe_affineSpan_singleton
mem_comap πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
comap
DFunLike.coe
AffineMap
AffineMap.instFunLike
β€”β€”
mem_map πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
map
DFunLike.coe
AffineMap
AffineMap.instFunLike
β€”β€”
mem_map_iff_mem_of_injective πŸ“–mathematicalDFunLike.coe
AffineMap
AffineMap.instFunLike
AffineSubspace
SetLike.instMembership
instSetLike
map
β€”Function.Injective.mem_set_image
mem_map_of_mem πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
map
DFunLike.coe
AffineMap
AffineMap.instFunLike
β€”Set.mem_image_of_mem
parallel_bot_iff_eq_bot πŸ“–mathematicalβ€”Parallel
Bot.bot
AffineSubspace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”map_eq_bot_iff
Parallel.refl
parallel_comm πŸ“–mathematicalβ€”Parallelβ€”Parallel.symm
parallel_iff_direction_eq_and_eq_bot_iff_eq_bot πŸ“–mathematicalβ€”Parallel
direction
Bot.bot
AffineSubspace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Parallel.direction_eq
bot_parallel_iff_eq_bot
parallel_bot_iff_eq_bot
Iff.not
nonempty_iff_ne_bot
eq_iff_direction_eq_of_mem
mem_map
vsub_vadd
RingHomSurjective.ids
map_direction
Submodule.map_id
preimage_coe_affineSpan_singleton πŸ“–mathematicalβ€”Set.preimage
AffineSubspace
SetLike.instMembership
instSetLike
affineSpan
Set
Set.instSingletonSet
Set.univ
β€”Set.eq_univ_of_forall
mem_affineSpan_singleton
subsingleton_of_subsingleton_span_eq_top πŸ“–β€”Set.Subsingleton
affineSpan
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”β€”nonempty_of_affineSpan_eq_top
Set.Subset.antisymm
Set.subsingleton_of_univ_subsingleton
Set.subsingleton_iff_singleton
Set.mem_univ
top_coe
coe_affineSpan_singleton
ext_iff
subtype_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineMap
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
direction
AffineSubspace
instSetLike
Submodule.addCommGroup
Submodule.module
toAddTorsor
AffineMap.instFunLike
subtype
β€”β€”
subtype_injective πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
DFunLike.coe
AffineMap
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
direction
Submodule.addCommGroup
Submodule.module
toAddTorsor
AffineMap.instFunLike
subtype
β€”Subtype.coe_injective
subtype_linear πŸ“–mathematicalβ€”AffineMap.linear
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
direction
AffineSubspace
instSetLike
Submodule.addCommGroup
Submodule.module
toAddTorsor
subtype
Submodule.subtype
β€”β€”
topEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
AffineSubspace
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
direction
Submodule.addCommGroup
Submodule.module
toAddTorsor
instNonemptySubtypeMemTop
EquivLike.toFunLike
AffineEquiv.equivLike
topEquiv
Set
Set.instMembership
Set.univ
β€”instNonemptySubtypeMemTop
topEquiv_symm_apply_coe πŸ“–mathematicalβ€”Set
Set.instMembership
Set.univ
DFunLike.coe
AffineEquiv
AffineSubspace
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
direction
Submodule.addCommGroup
Submodule.module
toAddTorsor
instNonemptySubtypeMemTop
EquivLike.toFunLike
AffineEquiv.equivLike
AffineEquiv.symm
topEquiv
β€”instNonemptySubtypeMemTop
vectorSpan_union_of_mem_of_mem πŸ“–mathematicalSet
Set.instMembership
vectorSpan
Set.instUnion
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
β€”span_union
direction_sup_eq_sup_direction
mem_affineSpan
vsub_left_mem_direction_iff_mem πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
direction
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”mem_direction_iff_eq_vsub_left
vsub_right_mem_direction_iff_mem πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
direction
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”mem_direction_iff_eq_vsub_right

AffineSubspace.Parallel

Theorems

NameKindAssumesProvesValidatesDepends On
direction_eq πŸ“–mathematicalAffineSubspace.ParallelAffineSubspace.directionβ€”RingHomSurjective.ids
AffineSubspace.map_direction
Submodule.map_id
refl πŸ“–mathematicalβ€”AffineSubspace.Parallelβ€”AffineEquiv.constVAdd_zero
AffineSubspace.map_id
trans πŸ“–β€”AffineSubspace.Parallelβ€”β€”AffineSubspace.map_map
AffineEquiv.coe_trans_to_affineMap
AffineEquiv.constVAdd_add
vectorSpan_eq πŸ“–mathematicalAffineSubspace.Parallel
affineSpan
vectorSpanβ€”direction_eq

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
affineSpan_coe_preimage_eq_top πŸ“–mathematicalβ€”affineSpan
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AffineSubspace.direction
AffineSubspace
AffineSubspace.instSetLike
Submodule.addCommGroup
Submodule.module
AffineSubspace.toAddTorsor
instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem
Set.preimage
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
AffineSubspace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem
eq_top_iff
affineSpan_induction'
subset_affineSpan
AffineSubspace.smul_vsub_vadd_mem
affineSpan_pair_eq_of_left_mem_of_ne πŸ“–β€”AffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
β€”β€”affineSpan_pair_eq_of_mem_of_mem_of_ne
right_mem_affineSpan_pair
affineSpan_pair_eq_of_mem_of_mem_of_ne πŸ“–β€”AffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
β€”β€”le_antisymm
affineSpan_pair_le_of_mem_of_mem
vadd_left_mem_affineSpan_pair
vsub_vadd
sub_ne_zero
sub_smul
vsub_sub_vsub_cancel_right
neg_mul
neg_smul
SemigroupAction.mul_smul
eq_inv_smul_iffβ‚€
neg_vsub_eq_vsub_rev
smul_vsub_vadd_mem_affineSpan_pair
one_smul
affineSpan_pair_eq_of_right_mem_of_ne πŸ“–β€”AffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
β€”β€”affineSpan_pair_eq_of_mem_of_mem_of_ne
left_mem_affineSpan_pair
affineSpan_singleton_union_vadd_eq_top_of_span_eq_top πŸ“–mathematicalSubmodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set.range
Set
Set.instMembership
Top.top
Submodule
Submodule.instTop
affineSpan
Set.instUnion
Set.instSingletonSet
Set.image
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
AffineSubspace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”AffineSubspace.ext_of_direction_eq
direction_affineSpan
AffineSubspace.direction_top
vectorSpan_eq_span_vsub_set_right
Set.mem_union_left
Set.mem_singleton
eq_top_iff
Submodule.span_mono
vadd_vsub
mem_affineSpan
AffineSubspace.mem_top
exists_eq_smul_of_parallel πŸ“–mathematicalAffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
AffineSubspace.Parallel
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
AffineSubspace.direction
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
β€”AffineSubspace.affineSpan_pair_parallel_iff_exists_unit_smul'
DivisionRing.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
AffineSubspace.direction_affineSpan_pair_le_iff_exists_smul
Units.ne_zero
DivisionRing.toNontrivial
Units.smul_def
neg_vsub_eq_vsub_rev
smul_neg
vsub_add_vsub_cancel
smul_add
add_comm
neg_mem_iff
AddSubgroupClass.toNegMemClass
Submodule.addSubgroupClass
smul_vsub_mem_vectorSpan_pair
smul_vsub_rev_mem_vectorSpan_pair
sub_smul
add_sub_add_left_eq_sub
sub_mem
AffineSubspace.vsub_left_mem_direction_iff_mem
right_mem_affineSpan_pair
direction_affineSpan
Submodule.smul_mem_iff
IsScalarTower.left
sub_ne_zero
mem_affineSpan_pair_iff_exists_lineMap_eq πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
DFunLike.coe
AffineMap
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AffineMap.instFunLike
AffineMap.lineMap
β€”vadd_left_mem_affineSpan_pair
vsub_vadd
AffineMap.lineMap_apply
AffineMap.lineMap_mem_affineSpan_pair
mem_affineSpan_pair_iff_exists_lineMap_rev_eq πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
DFunLike.coe
AffineMap
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AffineMap.instFunLike
AffineMap.lineMap
β€”Set.pair_comm
mem_affineSpan_pair_iff_exists_lineMap_eq
mem_vectorSpan_pair πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set
Set.instInsert
Set.instSingletonSet
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
VSub.vsub
AddTorsor.toVSub
β€”vectorSpan_pair
Submodule.mem_span_singleton
mem_vectorSpan_pair_rev πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set
Set.instInsert
Set.instSingletonSet
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
VSub.vsub
AddTorsor.toVSub
β€”vectorSpan_pair_rev
Submodule.mem_span_singleton
smul_vsub_rev_vadd_mem_affineSpan_pair πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
β€”AffineMap.lineMap_rev_mem_affineSpan_pair
smul_vsub_vadd_mem_affineSpan_pair πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
β€”AffineMap.lineMap_mem_affineSpan_pair
vadd_left_mem_affineSpan_pair πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
β€”AffineSubspace.vadd_mem_iff_mem_direction
left_mem_affineSpan_pair
direction_affineSpan
mem_vectorSpan_pair_rev
vadd_right_mem_affineSpan_pair πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
β€”AffineSubspace.vadd_mem_iff_mem_direction
right_mem_affineSpan_pair
direction_affineSpan
mem_vectorSpan_pair
vectorSpan_eq_span_vsub_finset_right_ne πŸ“–mathematicalFinset
Finset.instMembership
vectorSpan
SetLike.coe
Finset.instSetLike
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Finset.image
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
Finset.erase
β€”vectorSpan_eq_span_vsub_set_right_ne
Finset.mem_coe
Finset.coe_image
Finset.coe_erase
vectorSpan_eq_span_vsub_set_left πŸ“–mathematicalSet
Set.instMembership
vectorSpan
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set.image
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”vectorSpan_def
le_antisymm
Submodule.span_le
vsub_sub_vsub_cancel_left
SetLike.mem_coe
Submodule.mem_span
Submodule.sub_mem
Submodule.span_mono
vectorSpan_eq_span_vsub_set_left_ne πŸ“–mathematicalSet
Set.instMembership
vectorSpan
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set.image
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
Set.instSDiff
Set.instSingletonSet
β€”vectorSpan_eq_span_vsub_set_left
Set.insert_eq_of_mem
Set.insert_diff_singleton
Set.image_insert_eq
vsub_self
Submodule.span_insert_eq_span
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
vectorSpan_eq_span_vsub_set_right πŸ“–mathematicalSet
Set.instMembership
vectorSpan
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set.image
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”vectorSpan_def
le_antisymm
Submodule.span_le
vsub_sub_vsub_cancel_right
SetLike.mem_coe
Submodule.mem_span
Submodule.sub_mem
Submodule.span_mono
vectorSpan_eq_span_vsub_set_right_ne πŸ“–mathematicalSet
Set.instMembership
vectorSpan
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set.image
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
Set.instSDiff
Set.instSingletonSet
β€”vectorSpan_eq_span_vsub_set_right
Set.insert_eq_of_mem
Set.insert_diff_singleton
Set.image_insert_eq
vsub_self
Submodule.span_insert_eq_span
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
vectorSpan_image_eq_span_vsub_set_left_ne πŸ“–mathematicalSet
Set.instMembership
vectorSpan
Set.image
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
Set.instSDiff
Set.instSingletonSet
β€”vectorSpan_eq_span_vsub_set_left
Set.mem_image_of_mem
Set.insert_eq_of_mem
Set.insert_diff_singleton
Set.image_insert_eq
vsub_self
Submodule.span_insert_eq_span
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
vectorSpan_image_eq_span_vsub_set_right_ne πŸ“–mathematicalSet
Set.instMembership
vectorSpan
Set.image
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
Set.instSDiff
Set.instSingletonSet
β€”vectorSpan_eq_span_vsub_set_right
Set.mem_image_of_mem
Set.insert_eq_of_mem
Set.insert_diff_singleton
Set.image_insert_eq
vsub_self
Submodule.span_insert_eq_span
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
vectorSpan_pair πŸ“–mathematicalβ€”vectorSpan
Set
Set.instInsert
Set.instSingletonSet
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”vectorSpan_eq_span_vsub_set_left
Set.mem_insert
Set.image_pair
vsub_self
Submodule.span_insert_zero
vectorSpan_pair_rev πŸ“–mathematicalβ€”vectorSpan
Set
Set.instInsert
Set.instSingletonSet
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”Set.pair_comm
vectorSpan_pair
vectorSpan_range_eq_span_range_vsub_left πŸ“–mathematicalβ€”vectorSpan
Set.range
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”vectorSpan_eq_span_vsub_set_left
Set.mem_range_self
Set.range_comp
vectorSpan_range_eq_span_range_vsub_left_ne πŸ“–mathematicalβ€”vectorSpan
Set.range
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”Set.image_univ
vectorSpan_image_eq_span_vsub_set_left_ne
Set.mem_univ
Set.ext
vectorSpan_range_eq_span_range_vsub_right πŸ“–mathematicalβ€”vectorSpan
Set.range
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”vectorSpan_eq_span_vsub_set_right
Set.mem_range_self
Set.range_comp
vectorSpan_range_eq_span_range_vsub_right_ne πŸ“–mathematicalβ€”vectorSpan
Set.range
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”Set.image_univ
vectorSpan_image_eq_span_vsub_set_right_ne
Set.mem_univ
Set.ext
vectorSpan_vadd πŸ“–mathematicalβ€”vectorSpan
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
β€”Set.vadd_set_vsub_vadd_set

---

← Back to Index